首页> 外文OA文献 >Deterministic fractal models for transport properties, inspired by d = 2 random walks
【2h】

Deterministic fractal models for transport properties, inspired by d = 2 random walks

机译:受d = 2随机游动启发的运输性质的确定性分形模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a class of deterministic ultrametric fractal models in d=2, which are expected to mimic some dynamic properties of random walks. The relative diffusion and dc conduction problems are solved exactly, showing both universal and nonuniversal regimes, as already found in simpler d=1 hierarchical structures. For a natural choice of parameters, the model's spectral dimension takes the Alexander-Orbach value 4/3 which was also conjectured for random walks in d=2. The problem of self-avoiding walks on these structures is also briefly discussed.
机译:我们在d = 2中引入了一类确定性超度量分形模型,该模型有望模拟随机游动的某些动态特性。正如在较简单的d = 1层次结构中已经发现的那样,相对扩散和直流传导问题得到了精确解决,同时显示了通用和非通用状态。对于自然选择的参数,模型的光谱维数采用Alexander-Orbach值4/3,该值也被推测为d = 2中的随机游动。还简要讨论了在这些结构上进行自我规避的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号