首页> 外文OA文献 >Exact algorithms for procurement problems under a total quantity discount structure
【2h】

Exact algorithms for procurement problems under a total quantity discount structure

机译:总量折扣结构下采购问题的精确算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we study the procurement problem faced by a buyer who needs to purchase a variety of goods from suppliers applying a so-called total quantity discount policy. This policy implies that every supplier announces a number of volume intervals and that the volume interval in which the total amount ordered lies determines the discount. Moreover, the discounted prices apply to all goods bought from the supplier, not only to those goods exceeding the volume threshold. We refer to this cost-minimization problem as the TQD problem. We give a mathematical formulation for this problem and argue that not only it is NP-hard, but also that there exists no polynomial-time approximation algorithm with a constant ratio (unless P = NP). Apart from the basic form of the TQD problem, we describe three variants. In a first variant, the market share that one or more suppliers can obtain is constrained. Another variant allows the buyer to procure more goods than strictly needed, in order to reach a lower total cost. In a third variant, the number of winning suppliers is limited. We show that the TQD problem and its variants can be solved by solving a series of min-cost flow problems. Finally, we investigate the performance of three exact algorithms (min-cost flow based branch-and-bound, linear programming based branch-and-bound, and branch-and-cut) on randomly generated instances involving 50 suppliers and 100 goods. It turns out that even the large instances of the basic problem are solved to optimality within a limited amount of time. However, we find that different algorithms perform best in terms of computation time for different variants.
机译:在本文中,我们研究了需要采用所谓的总数量折扣政策从供应商那里购买各种商品的买方所面临的采购问题。此策略意味着每个供应商都宣布多个数量间隔,并且所订购的总金额所位于的数量间隔决定了折扣。此外,折扣价适用于从供应商处购买的所有商品,不仅适用于超出数量阈值的那些商品。我们将此成本最小化问题称为TQD问题。我们对此问题给出了数学公式,并指出不仅它是NP难的,而且不存在具有恒定比率(除非P = NP)的多项式时间近似算法。除了TQD问题的基本形式,我们还描述了三种变体。在第一种变型中,一个或多个供应商可以获得的市场份额受到限制。另一个变体允许买方购买比严格需要更多的商品,以达到较低的总成本。在第三变体中,获胜供应商的数量是有限的。我们表明,可以通过解决一系列最小成本流问题来解决TQD问题及其变体。最后,我们在涉及50个供应商和100种商品的随机生成实例上研究了三种精确算法(基于最小成本流的分支定界,基于线性规划的分支定界和分支定格)的性能。事实证明,即使是基本问题的大型实例,也都可以在有限的时间内解决到最佳状态。但是,我们发现在不同变体的计算时间方面,不同的算法表现最佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号