首页> 外文OA文献 >Opportunities and developments on the intensification of chemical and geochemical processes by gravity pressure vessel technology
【2h】

Opportunities and developments on the intensification of chemical and geochemical processes by gravity pressure vessel technology

机译:利用重力容器技术强化化学和地球化学过程的机会和发展

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A multitude of chemical reactions rely on high temperatures and pressures to attain suitable kinetics and reach desirable conversions, which are commonly delivered in autoclave reactors. Traditional reactor designs (e.g. CSTRs) have large energy demands (due to pressurization and mixing demands, and heat losses) and costly construction specifications (to meet pressurized vessel codes and safety provisions), which make certain processing routes prohibitively expensive. An alternative reactor technology, which cleverly applies the principles of process integration and process intensification [1], is the Gravity Pressure Vessel (GPV). This is a special kind of autoclave with a built-in heat exchanger, plug flow configuration, and gravity driven pressurization/depressurization. Residence time is controlled by the reactor length that can reach up to 2400 m, resulting in hydrostatically built pressures that can exceed 120 bar. By continuously recycling exothermic reaction heat, up to 70% of the energy can be conserved, and high end temperatures can be achieved (up to 500 °C). In the case of slurry flow, the generated turbulence promotes particle-particle interaction, removing passivating layers and autogenously milling the reacting material, permitting post-processing separation of the mineral phases into valuable product streams.The first patent of the GPV technique was granted in 1981 (US4272383) for wet-air oxidation of sewage sludge. This process was in operation for 12 years in Apeldoorn (the Netherlands), reducing chemical oxygen demand (COD) by >70% and generating up to 10 MW in heat output. Recently, Innovation Concepts B.V. patented the ‘CO2 Energy Reactor™’ (WO2011/155830A1), an application of GPV to mineral carbonation. This is an economically viable, socially acceptable and environmentally sustainable process that permanently sequesters CO2; an alternative to underground storage. It utilizes alkaline minerals (virgin or waste-derived), rich in calcium (e.g. wollastonite, steel slags and incineration ashes) or magnesium (e.g. olivine, serpentine, asbestos and mine tailings) as carbon sinks. Besides carbon capture, valuable product streams also emerge: precipitated carbonates, amorphous silica, and enriched metal residues. This solution results in the stabilization or detoxification of hazardous industrial wastes, and in the valorisation of abundant low-value minerals.The GPV technology is also being developed for the oil sands industry. Bituminous sands are a type of unconventional petroleum deposit consisting of a mixture of sand, clay, water, and a dense and extremely viscous form of petroleum (the bitumen or “tar”). GPV technology is a sustainable solution to one main problem area: oil sand tailings treatment. Wet-air oxidation permits the conversion of MFT (Mature Fine Tailings) to TTT (Thermally Treaded Tailings), wherein residual bitumen in MFT is used as energy source for the process. The outcome is reduced settling time, metals oxidation, reduced contaminants leaching, and freed water that can be re-used in the separation process.This work reports on the technical aspects of the GPV technology, and on the latest developments, challenges and outlook for its adaptation to the considered applications and adoption by the mainstream industry.[1] Santos, R.M., Van Gerven, T. (2011) Process intensification routes for mineral carbonation. Greenhouse Gases: Science and Technology 1(4), 287–293.
机译:许多化学反应依赖于高温和高压来获得合适的动力学并达到所需的转化率,这通常在高压釜反应器中进行。传统的反应堆设计(例如CSTR)具有大量的能源需求(由于加压和混合需求以及热损失)和昂贵的构造规格(以满足加压容器规范和安全规定),这使得某些加工路线的成本过高。重力反应堆(GPV)是一种替代反应堆技术,巧妙地应用了过程集成和过程强化的原理[1]。这是一种特殊的高压釜,带有内置热交换器,活塞流配置和重力驱动的加压/减压。停留时间由可达到2400 m的反应堆长度控制,从而导致静水压力超过120 bar。通过不断地循环放热反应热,可以节省多达70%的能量,并且可以达到高端温度(高达500°C)。在浆液流动的情况下,产生的湍流促进了颗粒与颗粒之间的相互作用,去除了钝化层并自生地研磨了反应材料,从而允许将矿物相进行后处理分离成有价值的产物流。GPV技术的第一项专利获得了1981(US4272383)用于污水污泥的湿空气氧化。该过程在荷兰阿珀尔多伦(Apeldoorn)运营了12年,将化学需氧量(COD)降低了70%以上,并产生了高达10 MW的热量。最近,Innovation Concepts B.V.申请了“ CO2能量反应器™”(WO2011 / 155830A1)的专利,该技术将GPV应用于矿物碳酸化。这是一个在经济上可行,在社会上可以接受且在环境上可持续的过程,可以永久隔离二氧化碳。地下存储的替代方案。它利用富含钙(例如硅灰石,钢渣和焚烧灰烬)或镁(例如橄榄石,蛇纹石,石棉和矿山尾矿)的碱性矿物(原始或废物来源)作为碳汇。除碳捕获外,还出现了有价值的产品流:沉淀的碳酸盐,无定形二氧化硅和富金属残留物。该解决方案可对危险的工业废料进行稳定化处理或排毒处理,并丰富低价矿物的价值。GPV技术也正在为油砂行业开发。沥青砂是一种非常规的石油矿床,由沙子,粘土,水和致密且极粘稠的石油(沥青或“焦油”)混合物组成。 GPV技术是对一个主要问题领域(油砂尾矿处理)的可持续解决方案。湿空气氧化允许将MFT(成熟的尾矿)转化为TTT(热胎尾矿),其中MFT中的残留沥青用作该工艺的能源。结果是减少了沉淀时间,减少了金属氧化,减少了污染物浸出并释放了可在分离过程中重复使用的水。这项工作报告了GPV技术的技术方面以及最新发展,挑战和前景它适应了主流行业考虑的应用和采用。[1] Santos,R.M.,Van Gerven,T.(2011)矿物碳化的过程强化路线。温室气体:科学与技术1(4),287-293。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号