首页> 外文OA文献 >CFD simulation of cross-ventilation flow for different isolated building configurations: Validation with wind tunnel measurements and analysis of physical and numerical diffusion effects
【2h】

CFD simulation of cross-ventilation flow for different isolated building configurations: Validation with wind tunnel measurements and analysis of physical and numerical diffusion effects

机译:不同隔离建筑结构的对流通风的CFD模拟:通过风洞测量进行验证以及对物理和数值扩散效应的分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational Fluid Dynamics (CFD) has become one of the most important tools for the assessment of natural cross-ventilation of buildings. To ensure the accuracy and reliability of CFD simulations, solution verification and validation studies are needed, as well as detailed sensitivity studies to analyse the impact of computational parameters on the results. In a previous study by the present authors, the impact of a wide range of computational parameters on the cross-ventilation flow in a generic isolated single-zone building was investigated. This paper presents the follow-up study that focuses in more detail on validation with wind tunnel measurements and on the effects of physical and numerical diffusion on the cross-ventilation flow. The CFD simulations are performed with the 3D steady Reynolds-Averaged Navier-Stokes (RANS) approach with the SST k-w model to provide closure. Validation of the coupled outdoor wind flow and indoor airflow simulations is performed based on Particle Image Velocimetry (PIV) measurements for four different building configurations. The analysis of numerical diffusion effects is performed in two parts. First, the effect of physical diffusion is analysed by changing the inlet profiles of turbulent kinetic energy within a realistic range. Second, the effect of numerical diffusion is investigated by changing the grid resolution and by applying both first-order and second-order discretisation schemes. The results of the validation study show a good to very good agreement for three of the four configurations, while a somewhat less good agreement is obtained for the fourth configuration. The results of the diffusion study show that the effects of physical and numerical diffusion are very similar. Along the centreline between the openings, these effects are most pronounced inside the building, and less pronounced outside the building. The velocity-vector fields however show that increased physical and numerical diffusion decreases the size of the upstream standing vortex and increases the spread of the jet entering the buildings. It is concluded that diffusion is an important transport mechanism in cross-ventilation of buildings, and that special care is needed to select the right amount ofphysical diffusion and to reduce the numerical diffusion, by using high-resolution grids and by using at leastsecond-order accurate discretisation schemes.
机译:计算流体力学(CFD)已成为评估建筑物自然交叉通风的最重要工具之一。为了确保CFD仿真的准确性和可靠性,需要进行溶液验证和确认研究,以及详细的敏感性研究以分析计算参数对结果的影响。在本作者的先前研究中,研究了各种计算参数对通用隔离单区域建筑物中的交叉通风流的影响。本文介绍了后续研究,该研究将更详细地关注风洞测量的验证以及物理和数值扩散对交叉通风流的影响。 CFD仿真是通过SST k-w模型的3D稳定雷诺平均Navier-Stokes(RANS)方法执行的,以提供闭合效果。基于四种不同建筑配置的粒子图像测速(PIV)测量,对室外风流和室内气流耦合模拟进行验证。数值扩散效应的分析分为两个部分。首先,通过在实际范围内改变湍动能的入口轮廓来分析物理扩散的影响。其次,通过改变网格分辨率并应用一阶和二阶离散化方案来研究数值扩散的影响。验证研究的结果表明,对于四种配置中的三种,良好至非常好的一致性,而对于第四种配置,则获得的一致性较差。扩散研究的结果表明,物理扩散和数值扩散的影响非常相似。沿着开口之间的中心线,这些影响在建筑物内最为明显,而在建筑物外较不明显。然而,速度矢量场表明,增加的物理和数值扩散会减小上游立式涡流的大小,并增加进入建筑物的射流的扩散。结论是扩散是建筑物交叉通风的重要运输机制,需要特别注意选择适当的物理扩散量并通过使用高分辨率网格和至少使用二阶方法来减小数值扩散。准确的离散化方案。

著录项

  • 作者

    Ramponi R; Blocken Bert;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号