首页> 外文OA文献 >A Combinatorial Benders' decomposition for the lock scheduling problem
【2h】

A Combinatorial Benders' decomposition for the lock scheduling problem

机译:锁调度问题的组合Benders分解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Lock Scheduling Problem (LSP) is a combinatorial optimization problem that represents a real challenge for many harbours and waterway operators. The LSP consists of three strongly interconnected sub problems: scheduling lockages, assigning ships to chambers, and positioning the ships inside the chambers. These should be interpreted respectively as a scheduling, an assignment, and a packing problem. By combining the first two problems into a master problem and using the packing problem as a sub problem, a decomposition is achieved that can be solved efficiently by a Combinatorial Benders' approach. The master problem is solved first, thereby sequencing the ships into a number of lockages. Next, for each lockage, a packing sub problem is checked for feasibility, possibly returning a number of combinatorial inequalities (cuts) to the master problem.The result is an exact approach to the LSP. Experiments are conducted on a set of instances that were generated in correspondence with real world data. The results indicate that the decomposition approach significantly outperforms other exact approaches presented in the literature, in terms of solution quality and computation time.
机译:锁定调度问题(LSP)是组合优化问题,对于许多港口和水路运营商而言,这是一个真正的挑战。 LSP由三个相互联系的子问题组成:调度锁定,将船只分配到各舱室以及将各舱室放置在舱室内。这些应分别解释为计划,分配和包装问题。通过将前两个问题合并为一个主要问题,并将打包问题用作子问题,可以实现分解,该分解可以通过组合折弯器的方法有效地解决。首先解决了主要问题,从而将船只按顺序分成了许多船闸。接下来,对于每个锁定,检查装箱次问题的可行性,可能将许多组合不等式(割伤)返回给主问题,结果是LSP的一种精确方法。实验是根据与实际数据对应生成的一组实例进行的。结果表明,在求解质量和计算时间方面,分解方法明显优于文献中提出的其他精确方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号