首页> 外文OA文献 >Fine-grained indoor positioning and tracking systems
【2h】

Fine-grained indoor positioning and tracking systems

机译:细粒度的室内定位和跟踪系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Indoor positioning has attracted considerable attention for decades due to the increasinguddemands for location based services. In the past years, although numerousudmethods have been proposed for indoor positioning, it is still challenging to find audconvincing solution that combines high positioning accuracy and ease of deployment.udRadio-based indoor positioning has emerged as a dominant method due toudits ubiquitousness, especially for WiFi. RSSI (Received Signal Strength Indicator)udhas been investigated in the area of indoor positioning for decades. However, itudis prone to multipath propagation and hence fingerprinting has become the mostudcommonly used method for indoor positioning using RSSI. The drawback of fingerprintingudis that it requires intensive labour efforts to calibrate the radio mapudprior to experiments, which makes the deployment of the positioning system veryudtime consuming. Using time information as another way for radio-based indoorudpositioning is challenged by time synchronization among anchor nodes and timestampudaccuracy. Besides radio-based positioning methods, intensive research hasudbeen conducted to make use of inertial sensors for indoor tracking due to the fastuddevelopments of smartphones. However, these methods are normally prone to accumulativeuderrors and might not be available for some applications, such as passiveudpositioning.udThis thesis focuses on network-based indoor positioning and tracking systems,udmainly for passive positioning, which does not require the participation of targetsudin the positioning process. To achieve high positioning accuracy, we work on someudinformation of radio signals from physical-layer processing, such as timestampsudand channel information. The contributions in this thesis can be divided into twoudparts: time-based positioning and channel information based positioning. First,udfor time-based indoor positioning (especially for narrow-band signals), we addressudchallenges for compensating synchronization offsets among anchor nodes, designingudtimestamps with high resolution, and developing accurate positioning methods.udSecond, we work on range-based positioning methods with channel information toudpassively locate and track WiFi targets. Targeting less efforts for deployment, weudwork on range-based methods, which require much less calibration efforts than fingerprinting.udBy designing some novel enhanced methods for both ranging and positioningud(including trilateration for stationary targets and particle filter for mobileudtargets), we are able to locate WiFi targets with high accuracy solely relying on radioudsignals and our proposed enhanced particle filter significantly outperforms theudother commonly used range-based positioning algorithms, e.g., a traditional particleudfilter, extended Kalman filter and trilateration algorithms. In addition to usingudradio signals for passive positioning, we propose a second enhanced particle filterudfor active positioning to fuse inertial sensor and channel information to track indoorudtargets, which achieves higher tracking accuracy than tracking methods solelyudrelying on either radio signals or inertial sensors.
机译:由于基于位置的服务的需求日益增长,室内定位吸引了数十年的关注。在过去的几年中,尽管已经提出了许多用于室内定位的方法,但是要找到一种结合了高定位精度和易于部署的令人信服的解决方案仍然是一项挑战。基于无线电的室内定位已成为一种主要方法,原因是 udip无所不在,尤其是对于WiFi。 RSSI(接收信号强度指示器)已在室内定位领域进行了数十年的研究。然而,它倾向于多径传播,因此指纹识别已成为使用RSSI进行室内定位的最常用方法。指纹识别的缺点是,在实验之前需要花费大量的精力来校准无线电地图,这使得定位系统的部署非常耗时。锚节点之间的时间同步和时间戳/精度要求使用时间信息作为基于无线电的室内叠加的另一种方式。除了基于无线电的定位方法之外,由于智能手机的快速发展,已经进行了深入的研究以将惯性传感器用于室内跟踪。但是,这些方法通常容易产生累积 uderrors,可能不适用于某些应用,例如被动 udpositioning。 ud本文主要研究基于网络的室内定位和跟踪系统,主要用于被动定位,不需要目标 udin在定位过程中的参与。为了获得较高的定位精度,我们研究了来自物理层处理的一些无线电信号信息,例如时间戳 udand信道信息。本文的贡献可以分为两个部分:基于时间的定位和基于信道信息的定位。首先,对于基于时间的室内定位(特别是对于窄带信号),我们解决了在锚节点之间补偿同步偏移的挑战,设计了具有高分辨率的udtimestamp,并开发了精确的定位方法。信道信息的基于定位的方法来被动地定位和跟踪WiFi目标。为了减少部署工作量,我们采用基于距离的方法进行工作,与指纹识别相比,需要较少的校准工作。 ud通过设计一些新颖的增强方法来进行测距和定位 ud(包括固定目标的三边测量和移动目标的粒子过滤器 udtargets),我们仅依靠无线电 udsignal就能够高精度地定位WiFi目标,并且我们提出的增强型粒子滤波器明显优于其他基于距离的定位算法,例如传统的粒子 udfilter,扩展卡尔曼滤波器和三边测量算法。除了使用 udradio信号进行被动定位外,我们还建议使用第二个增强型粒子滤波器 ud进行主动定位,以融合惯性传感器和通道信息来跟踪室内 udtarget,与仅基于或仅对任一无线电信号进行跟踪的方法相比,其跟踪精度更高或惯性传感器。

著录项

  • 作者

    Li Zan;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号