首页> 外文OA文献 >THE PROBLEM OF MISSING DATA IN HYDROCLIMATIC TIME SERIES. APPLICATION OF SPATIAL INTERPOLATION TECHNIQUES TO CONSTRUCT A COMPREHENSIVE ARCHIVE OF HYDROCLIMATIC DATA IN SICILY, ITALY
【2h】

THE PROBLEM OF MISSING DATA IN HYDROCLIMATIC TIME SERIES. APPLICATION OF SPATIAL INTERPOLATION TECHNIQUES TO CONSTRUCT A COMPREHENSIVE ARCHIVE OF HYDROCLIMATIC DATA IN SICILY, ITALY

机译:水文时间序列中的数据丢失问题。空间插值技术在意大利西西里岛水文资料综合档案中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Planning, management and e ective control of water resource systems, require a considerableudamount of hydrological data variables such as rainfall, temperature, stream-ud ow, etc.. Such data are required when a hydrological model has to be developed,udas well. Very often hydrological data sequences at a given gauge have gaps or areudincomplete, or are not characterized by a good quality or are not su ciently length.udThis can severely a ect, for example, the reliability of the design of a hydropowerudplant, the construction of dams, etc. Furthermore, the problem of missing values isuda common obstacle in time series analysis and speci cally in the context of rainfall,udtemperature and rainfall runo processes modelling.udThere may be various reasons for missing values, for instance equipment failure,uderrors in measurements or faults in data acquisition, and natural hazards such asudlandslides, or even temporary absence of observers, the cessation of measurement orudabsence of observations prior to the commencement of measurement or by limitedud nancial resources. Whatever the reasons, missing values produce a signi cant problemudfor water resources applications. Consequently, nding e cient methods to dealudwith the problem of missing values is an important issue in most hydrological analyses.udHowever, hydrological modellers commonly discard the observations with missingudvalues and only use the observations with complete information, which means thatuda lot of information contained in the dataset is lost. Furthermore, the approach isudinadequate for analyses that require serially complete data. On the other hand, theuduse of the dataset prone to missing data can result in errors that exhibit temporaludand spatial patterns (Stooksburry et al., 1999[Stooksbury1999]). As an alternative toudthis listwise(?) deletion procedure, modellers sometimes replace (or ll in ) a valueudfor the missing values by using, for example, the mean of the observed variables. Suchuda procedure could, however, seriously distort statistical properties like standard variation,udcorrelations or percentiles. But the best alternative to the above mentionedudapproaches consists of lling the gaps in the rainfall, temperature or stream ow timeudseries by estimating the missing values.udIn fact, the most common approach followed in technical literature is the applicationudof either deterministic or stocastic methods to estimate the missing data. Theuddescribed problem is so dramatically important within hydrological research that theudscienti c community has point out a transnational initiative of international researchudgroups, i.e., the ''Decade on Prediction in Ungauged Basins (PUB)'', a wide researchudproject promoted by the International Association of Hydrological Sciences (Sivapalanudet al., 2003). This e ort is particularly focused on the reconstruction of seriallyudincomplete data records in basins with short stream ow records or in ungauged riverudbasins.udIn this scenario, the individuation and application of the most suitable methodsudfor the accurate estimation of hydrological variable values, useful to ll in the incompleteudtime series, is of paramount importance and represents the most promisingudapproach to solve the problem of missing data. In particular, once the hydrologicaludvariable is de ned together with its speci c characteristic, the choice of the estimationudmethods and their comparison is necessary to carry out the best reconstruction of theudconsidered variable dataset.udThe issue of gaps in climatic variables have been the subject of a large number ofudscienti c works where numerous techniques for estimating missing data values haveudbeen implemented and compared. Among these methods, the temporal methods,udthat taking into account the temporal dependence of the considered variables, haveudbeen used and among more advanced methods, the space-time models, i.e. modelsudhandling dependence the spatial and temporal simultaneously, has been applied. Audgroup of methods that are also widely used in literature for the missing data estimationudare the spatial models which represent the spatial distribution of variables overuda speci c duration. Many papers have been dedicated to the comparison betweenuddeterministic and stochastic approaches to reconstruct data records and their resultsudsuggest that often the use of geostatistical techniques improve the results since theyudare able to study the pattern of spatial dependences observed for climatic variables;udin the particular case of estimation of runo , in some works it was highlighted thatudconsidering the runo as an areal process, i.e., considering the strongly dependenceudof runo with the basin area, improves by far the estimates obtained. Another considerationudis common to many works, i.e., that the use of algorithms that incorporateudancillary informations (geographical and morphological) into the spatial estimationudof climatic variables improves the obtained estimates.udThe aim of this thesis is to investigate the methods for the optimal estimation ofudthe missing data in time series of hydrological variables with reference to Sicily (Italy).udIn particular, the following hydrological variables are object of study: precipitation,udtemperature and runo .udIn this thesis only the spatial structural dependence of rainfall, temperature andudruno data is used to reconstruct missing data, neglecting the spatial-temporal dependence.udOn the basis of the variables speci ed, di erent estimation methods have beenudconsidered, described and applied to solve the problem of missing data. With regardudto the variables as precipitation and temperature, that can be represented as pointudprocesses, the following algorithms, used for the spatial interpolation, will be applied:udinverse distance weighting, radial basis function with thin plate spline, simple linearudregression, multiple regression, geographically weighted regression, arti cial neuraludnetwork, ordinary kriging, residual ordinary kriging. With the applications of theseudmethods, serially complete monthly and annual dataset will be obtained.udOn the other hand, for the runo , the proposed investigation stems from theudconsideration that it can be described as an areal process. With this assumption, audmore accurate estimation of the considered variable can be obtained. This approachudhas very few examples in scienti c literature but appears to be very promising inudthe considered eld. For this reason the estimation method, chosen for the runo ,udis a stochastic method to derive gridded maps for ner and ner resolution with audgeostatistical approach. It is, in particular, a stochastic interpolation system that canudbe assimilated to kriging system with the explicit consideration of the runo variableudas an areal process. The application of this methods will give the annual runo udestimated data for the stations that have been out of work in the chosen time windowudof input runo data and that are characterised by a dataset a ected by missing data.udMoreover, it will be possible to obtain the annual runo estimated values also forudthe areas of the basins not provided with gauge stations. The latter values can beudobtained by the gridded map with a certain resolution.udIt is important to highlight that the previous applications of such an approach areuddone in homogeneous climatic contexts with favorable conditions of the ow regime toudapply the procedure. On the contrary, here, for the rst time, the method is appliedudin the Sicilian context where both the climatic and morphological pro les are stronglyudinhomogeneous.
机译:水资源系统的规划,管理和有效控制需要大量的水文数据变量,例如降雨,温度,流量等。在必须开发水文模型时,需要这些数据,阿达斯很好。在给定规格的水文数据序列中,经常会出现间隙或 udincomplete,或没有高质量的特征或长度不够长。 ud这可能严重影响例如水电设计的可靠性此外,在时间序列分析中,缺少值是问题的共同障碍,特别是在降雨,高温和降雨符文过程建模的背景下。 ud缺少原因可能有多种值,例如设备故障,测量错误或数据采集错误,以及自然灾害,例如泥石流,甚至暂时没有观察员,在开始测量之前或在受到限制之前停止测量或没有观测值 ud财务资源。无论出于何种原因,缺少值都会对水资源应用产生重大问题。因此,在大多数水文分析中,寻找解决遗漏值问题的有效方法是一个重要问题。 ud但是,水文建模人员通常会丢弃遗漏 udvalues的观测值,而仅使用具有完整信息的观测值,这意味着数据集中包含的大量信息会丢失。此外,该方法对于需要连续完整数据的分析是不足够的。另一方面,易于误用数据集的数据集会导致表现出时间 udand空间模式的错误(Stooksburry等,1999 [Stooksbury1999])。作为此逐项删除过程的替代方法,建模者有时会使用(例如)观察变量的平均值来替换(或输入)缺失值的值。但是,这样的程序可能会严重扭曲统计特性,如标准差,不相关或百分位数。但是,上述 udapproach的最佳替代方法是通过估算缺失值来弥补降雨,温度或河流流量时间 udseries的差距。 ud事实上,技术文献中最常用的方法是应用 udof确定性或随机的方法来估计丢失的数据。这个未描述的问题在水文学研究中是如此重要,以致科学界指出了一项国际性研究 udgroup的跨国倡议,即“无约束盆地预测十年”(PUB),一项广泛的研究 udproject由国际水文科学协会(Sivapalan udet等,2003)推动。此方法特别着重于短流流域或未加水的河流 udbasin盆地中连续 udincomplete数据记录的重建。 ud在这种情况下,为了准确估算水文,最适合的方法的个性化和应用。对不完整 udtime系列中的ll有用的变量值至关重要,它代表解决数据丢失问题的最有希望的 udappach。特别是,一旦确定了水文 udvariable及其特定特征,就必须选择 udud udud方法并进行比较,以便对 udibled变量数据集进行最佳重建。 ud气候差距的问题变量已成为许多 u科学工作的主题,其中已经实施并比较了许多估计缺失数据值的技术。在这些方法中,已经使用了考虑所考虑变量的时间依赖性的时间方法,并且在更高级的方法中,时空模型(即模型同时处理了空间和时间的依赖性)已经被使用。应用。在文献中也广泛使用的一组方法来进行缺失数据估计提供表示特定持续时间内变量的空间分布的空间模型。许多论文致力于比较确定性和随机方法来重建数据记录及其结果。建议使用地统计学技术通常可以改善结果,因为它们能够研究观测到的气候变量的空间依赖性模式。 特殊情况下,在一些作品中,突突突显出突显了突突作为一个面过程,即,考虑突突对流域面积的强烈依赖 UD,远远改善了获得的估计。许多作品共有的另一个考虑因素是,使用将辅助信息(地理和形态学信息)合并到空间估计 udof气候变量中的算法可以改善所获得的估计。 ud本文的目的是研究对 n缺失数据进行最佳估计的方法。参考西西里岛(意大利)的水文变量的时间序列。 ud特别是以下水文变量是研究的对象:降水, ud温度和runo。 ud在本文中,仅降雨,温度和 udruno数据的空间结构依赖性 ud基于指定的变量,已经 d考虑,描述和应用了各种估计方法来解决丢失数据的问题。 关于降水和温度的变量(可以表示为点 ud过程),将应用以下用于空间插值的算法:反向距离权重,带有薄板样条的径向基函数,简单线性回归,多元回归,地理加权回归,人工神经 udnetwork,普通克里金法,残差普通克里金法。借助这些方法,将获得连续完整的月度和年度数据集。 ud另一方面,对于Runo而言,建议的调查源于 u考虑,可以将其描述为一个区域过程。通过这种假设,可以得到对所考虑变量的更准确的估计。这种方法在科学文献中几乎没有例子,但在考虑的领域中似乎很有希望。因此,为runo选择的估计方法会采用一种随机方法,以统计学方法得出用于ner和ner分辨率的网格化图。特别是,它是一种随机插补系统,在明确考虑了runo变量的情况下,它可以等同于kriging系统,而这是一个面过程。此方法的应用将为在所选时间窗内输入的Runo数据在选定的时间窗口内已停工的站点提供年度运行数据脱估的数据,并且其特征在于数据集受丢失数据的影响。 ud此外,它将还可以针对未设置标尺站的盆地区域获得年度径流估计值。后者的值可以通过具有一定分辨率的栅格地图获得。 ud必须强调指出,这种方法的先前应用是在均等的气候环境中采用乌德政权的有利条件实施该程序。相反,在这里,这是第一次在西西里语环境中应用该方法,因为那里的气候和形态特征都非常强。

著录项

  • 作者

    DI PIAZZA .;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号