首页> 外文OA文献 >Modelling biogeochemical cycles in forest ecosystems: a Bayesian approach
【2h】

Modelling biogeochemical cycles in forest ecosystems: a Bayesian approach

机译:在森林生态系统中模拟生物地球化学循环:贝叶斯方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Forest models are tools for explaining and predicting the dynamics of forest ecosystems. They simulate forest behavior by integrating information on the underlying processes in trees, soil and atmosphere.udBayesian calibration is the application of probability theory to parameter estimation. It is a method, applicable to all models, that quantifies output uncertainty and identifies key parameters and variables. This study aims at testing the Bayesian procedure for calibration to different types of forest models, to evaluate their performances and the uncertainties associated with them. In particular,we aimed at 1) applying a Bayesian framework to calibrate forest models and test their performances in different biomes and different environmental conditions, 2) identifying and solve structure-related issues in simple models, and 3) identifying the advantages of additional information made available when calibrating forest models with a Bayesian approach.ud We applied the Bayesian framework to calibrate the Prelued model on eight Italian eddy-covariance sites in Chapter 2. The ability of Prelued to reproduce the estimated Gross Primary Productivity (GPP) was tested over contrasting natural vegetation types that represented a wide range of climatic and environmental conditions.ud The issues related to Prelued's multiplicative structure were the main topic of Chapter 3: several different MCMC-based procedures were applied within a Bayesian framework to calibrate the model, and their performances were compared. A more complex model was applied in Chapter 4, focusing on the application of the physiology-based model HYDRALL to the forest ecosystem of Lavarone (IT) to evaluate the importance of additional information in the calibration procedure and their impact on model performances, model uncertainties, and parameter estimation. Overall, the Bayesian technique proved to be an excellent and versatile tool to successfully calibrate forest models of different structure and complexity, on different kind and number of variables and with a different number of parameters involved
机译:森林模型是解释和预测森林生态系统动态的工具。他们通过整合有关树木,土壤和大气中潜在过程的信息来模拟森林行为。 udBayesian校准是概率论在参数估计中的应用。这是一种适用于所有模型的方法,可以量化输出不确定性并识别关键参数和变量。这项研究旨在测试针对不同类型森林模型进行校准的贝叶斯程序,以评估其性能以及与之相关的不确定性。特别是,我们的目标是:1)应用贝叶斯框架来校准森林模型并测试其在不同生物群落和不同环境条件下的性能; 2)在简单模型中识别和解决与结构相关的问题; 3)识别附加信息的优势 ud在第2章中,我们使用贝叶斯框架在八个意大利涡流协方差站点上应用了贝叶斯框架对Prelued模型进行了校准。测试了Prelued再现估计的初级总生产力(GPP)的能力。 ud与Prelued乘法结构有关的问题是第3章的主题:在贝叶斯框架内应用了几种基于MCMC的不同方法来校准模型,比较他们的表演。在第4章中应用了更复杂的模型,重点是基于生理的模型HYDRALL在Lavarone(IT)的森林生态系统中的应用,以评估附加信息在校准程序中的重要性及其对模型性能,模型不确定性的影响,以及参数估算。总体而言,贝叶斯技术被证明是一种出色的通用工具,可以成功地校准不同结构和复杂性,不同种类和数量的变量以及涉及不同数量的参数的森林模型

著录项

  • 作者

    Bagnara M.;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号