首页> 外文OA文献 >A noninvasive intelligent approach for predicting the risk in dengue patients
【2h】

A noninvasive intelligent approach for predicting the risk in dengue patients

机译:预测登革热患者风险的无创智能方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The scope of the difficulties that has been addressed in dengue disease includes the definition of the risk criteria in dengue disease and the prediction of the risk in dengue patients. It is critical to precisely and efficiently predict the level of risk in dengue disease for clinical care, surveillance and lifesaving. Even though some studies showed significant results in this area, a complete, systematic approach for predicting the risk in dengue disease has never been attained yet. Therefore, this study was carried out to develop a noninvasive intelligent technique for predicting the risk in dengue patients. A combination of the self-organizing map (SOM) and multilayer feed-forward neural networks (MFNN) was employed for this task. Clinical manifestations and bioelectrical impedance analysis (BIA) parameters belonging to the dengue patients were considered for this aim. The SOM was used to define the significant risk predictors, whereas the MFNN was employed for constructing the prediction model. Seven significant risk predictors as defined by SOM were employed for the dengue patient risk classification. The MFNN prediction model defined by 10 hidden neurons, momentum of 0.99, learning rate of 0.1 and iteration rate of 20,000 achieved a 70 predicative accuracy with 0.121 sum squared error. © 2009 Elsevier Ltd. All rights reserved.
机译:登革热疾病已解决的困难范围包括登革热疾病风险标准的定义以及登革热患者风险的预测。准确有效地预测登革热疾病的风险水平对于临床护理,监测和挽救生命至关重要。尽管一些研究表明在该领域取得了显著成果,但尚未获得用于预测登革热风险的完整,系统的方法。因此,进行这项研究是为了开发一种非侵入性的智能技术来预测登革热患者的风险。自组织图(SOM)和多层前馈神经网络(MFNN)的组合用于此任务。为此目的考虑了属于登革热患者的临床表现和生物电阻抗分析(BIA)参数。 SOM用于定义重要的风险预测因素,而MFNN用于构建预测模型。由SOM定义的七个重要的风险预测因素被用于登革热患者的风险分类。由10个隐藏神经元,动量0.99,学习率0.1和20,000迭代率定义的MFNN预测模型实现了70个预测精度,总和平方误差为0.121。 ©2009 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号