首页> 外文OA文献 >Estimation and prediction of travel time from loop detector data for intelligent transportation systems applications
【2h】

Estimation and prediction of travel time from loop detector data for intelligent transportation systems applications

机译:根据环路检测器数据估算和预测行进时间,用于智能交通系统应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the advent of Advanced Traveler Information Systems (ATIS), short-term travel time prediction is becoming increasingly important. Travel time can be obtained directly from instrumented test vehicles, license plate matching, probe vehicles etc., or from indirect methods such as loop detectors. Because of their wide spread deployment, travel time estimation from loop detector data is one of the most widely used methods. However, the major criticism about loop detector data is the high probability of error due to the prevalence of equipment malfunctions. This dissertation presents methodologies for estimating and predicting travel time from the loop detector data after correcting for errors. The methodology is a multi-stage process, and includes the correction of data, estimation of travel time and prediction of travel time, and each stage involves the judicious use of suitable techniques. The various techniques selected for each of these stages are detailed below. The test sites are from the freeways in San Antonio, Texas, which are equipped with dual inductance loop detectors and AVI. ??Constrained non-linear optimization approach by Generalized Reduced Gradient (GRG) method for data reduction and quality control, which included a check for the accuracy of data from a series of detectors for conservation of vehicles, in addition to the commonly adopted checks. ??A theoretical model based on traffic flow theory for travel time estimation for both off-peak and peak traffic conditions using flow, occupancy and speed values obtained from detectors. ??Application of a recently developed technique called Support Vector Machines (SVM) for travel time prediction. An Artificial Neural Network (ANN) method is also developed for comparison. Thus, a complete system for the estimation and prediction of travel time from loop detector data is detailed in this dissertation. Simulated data from CORSIM simulation software is used for the validation of the results.
机译:随着高级旅行者信息系统(ATIS)的出现,短期旅行时间预测变得越来越重要。行驶时间可以直接从仪器测试车辆,牌照匹配,探测车辆等获得,也可以从间接方法(例如环路探测器)获得。由于它们的部署范围很广,因此根据环路检测器数据估算传播时间是最广泛使用的方法之一。但是,由于设备故障的普遍存在,对环路检测器数据的主要批评是出现错误的可能性很高。本文提出了校正误差后,根据环路检测器数据估算和预测行程时间的方法。该方法是一个多阶段的过程,包括数据的校正,行程时间的估计和行程时间的预测,并且每个阶段都涉及对合适技术的明智使用。下面详细介绍了为每个阶段选择的各种技术。测试地点来自德克萨斯州圣安东尼奥市的高速公路,该高速公路配备了双电感环路检测器和AVI。 ??通过通用缩减梯度(GRG)方法进行的约束非线性优化方法,用于数据缩减和质量控制,除了常用的检查方法外,还包括检查一系列用于车辆保护的检测器的数据准确性。 ??基于交通流理论的理论模型,用于使用从检测器获得的流量,占用率和速度值估算非高峰和高峰交通状况的行驶时间。 ??最近开发的称为支持向量机(SVM)的技术在行程时间预测中的应用。还开发了一种人工神经网络(ANN)方法进行比较。因此,本文详细介绍了一种用于从回路检测器数据估算和预测行程时间的完整系统。来自CORSIM仿真软件的仿真数据用于验证结果。

著录项

  • 作者

    Vanajakshi Lelitha Devi;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号