首页> 外文OA文献 >Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications
【2h】

Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications

机译:熔融盐纳米材料,用于热能存储和集中式太阳能发电应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as synthetic oil, fatty acid, or paraffin wax) are typically used for TES. This limits the operating temperature of CSP units to below 400 degrees C. Increasing the operating temperature to 560 degrees C (i.e., the creeping temperature of stainless steel), can enhance the theoretical thermal efficiency from 54 percent to 63 percent. However, very few thermal storage materials are compatible for these high temperatures. Molten salts are thermally stable up to 600 degrees C and beyond. Using the molten salts as the TES materials confers several benefits, which include: (1) Higher operating temperature can significantly increase the overall cycle efficiency and resulting costs of power production. (2) Low cost of the molten salt materials can drastically reduce the cost. (3) The molten salts, which are environmentally safe, can also reduce the potential environmental impact. However, these materials suffer from poor thermo-physical properties. Impregnating these materials with nanoparticles can enhance these properties. Solvents doped with nanoparticles are termed as nanofluids. Nanofluids have been reported in the literature for the anomalous enhancement of their thermo-physical properties. In this study, the poor thermal properties of the molten salts were enhanced dramatically on mixing with nanoparticles. For example the specific heat capacity of these molten salt eutectics was found to be enhanced by as much as ~ 26 percent on mixing with nanoparticles at a mass fraction of ~ 1 percent. The resultant properties of these nanomaterials were found to be highly sensitive to small variations in the synthesis protocols. Computational models were also developed in this study to explore the fundamental transport mechanisms on the molecular scale for elucidating the anomalous enhancements in the thermo-physical properties that were measured in these experiments. This study is applicable for thermal energy storage systems utilized for other energy conversion technologies ? such as geothermal energy, nuclear energy and a combination of energy generation technologies.
机译:集中太阳能发电(CSP)系统的热效率取决于系统的最高运行温度,该最高运行温度由TES设备的运行温度确定。 TES通常使用有机材料(例如合成油,脂肪酸或石蜡)。这将CSP单元的工作温度限制在400摄氏度以下。将工作温度提高到560摄氏度(即不锈钢的蠕变温度)可以将理论热效率从54%提高到63%。但是,很少有热存储材料适合这些高温。熔融盐在高达600摄氏度甚至更高的温度下具有热稳定性。使用熔融盐作为TES材料具有几个好处,其中包括:(1)更高的工作温度可以显着提高整体循环效率并降低发电成本。 (2)熔融盐材料的低成本可以大大降低成本。 (3)对环境安全的熔融盐还可以减少潜在的环境影响。但是,这些材料的热物理性能差。用纳米粒子浸渍这些材料可以增强这些性能。掺杂有纳米颗粒的溶剂被称为纳米流体。在文献中已经报道了纳米流体用于其热物理性质的异常增强。在这项研究中,熔融盐的不良热性能在与纳米颗粒混合时得到了显着增强。例如,发现以约1%的质量分数与纳米颗粒混合时,这些熔融盐共晶的比热可提高约26%。发现这些纳米材料的所得性质对合成方案中的小变化高度敏感。在这项研究中还开发了计算模型,以探索分子尺度上的基本转运机制,以阐明在这些实验中测得的热物理性质的异常增强。该研究适用于用于其他能量转换技术的热能存储系统吗?例如地热能,核能和能源发电技术的结合。

著录项

  • 作者

    Shin Donghyun;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号