首页> 外文OA文献 >Heat transfer in leading and trailing edge cooling channels of the gas turbine blade under high rotation numbers
【2h】

Heat transfer in leading and trailing edge cooling channels of the gas turbine blade under high rotation numbers

机译:高转数下燃气轮机叶片前缘和后缘冷却通道中的热传递

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The gas turbine blade/vane internal cooling is achieved by circulating thecompressed air through the cooling passages inside the turbine blade. Leading edge andtrailing edge of the turbine blade are two critical regions which need to be properlycooled. Leading edge region receives extremely hot mainstream flow and high heattransfer enhancement is required. Trailing edge region usually has narrow shapedgeometry and applicable cooling techniques are restricted. Heat transfer will beinvestigated in the leading edge and trailing edge cooling channels at high rotationnumbers close to the engine condition.Heat transfer and pressure drop has been investigated in an equilateral triangularchannel (Dh=1.83cm) to simulate the cooling channel near the leading edge of the gasturbine blade. Three different rib configurations (45?, inverted 45?, and 90?) were testedat four different Reynolds numbers (10000-40000), each with five different rotationalspeeds (0-400 rpm). By varying the Reynolds numbers (10000-40000) and the rotationalspeeds (0-400 rpm), the rotation number and buoyancy parameter reached in this study were 0-0.58 and 0-2.3, respectively. 45? angled ribs show the highest thermalperformance at stationary condition. 90? ribs have the highest thermal performance at thehighest rotation number of 0.58.Heat transfer coefficients are also experimentally measured in a wedge-shapedcooling channel (Dh =2.22cm, Ac=7.62cm2) to model an internal cooling passage nearthe trailing edge of a gas turbine blade where the coolant discharges through the slot tothe mainstream flow. Tapered ribs are put on the leading and trailing surfaces with anangle of attack of 45?. The ribs are parallel with staggered arrangement on oppositewalls. The inlet Reynolds number of the coolant varies from 10,000 to 40,000 and therotational speeds varies from 0 to 500 rpm. The inlet rotation number is from 0 - 1.0.The local rotation number and buoyancy parameter are determined by the rotationalspeeds and the local Reynolds number at each region. Results show that heat transfer ishigh near the regions where strong slot ejection exists. Both the rotation number andbuoyancy parameter have been correlated to predict the rotational heat transferenhancement.
机译:燃气涡轮机叶片/叶片的内部冷却是通过使压缩空气在涡轮机叶片内部的冷却通道中循环来实现的。涡轮叶片的前缘和后缘是两个关键区域,需要适当冷却。前缘区域接收到非常热的主流,因此需要提高传热能力。后缘区域通常具有狭窄的形状几何形状,并且适用的冷却技术受到限制。在接近发动机工况的高转数下,将在前缘和后缘冷却通道中研究传热。已在等边三角形通道(Dh = 1.83cm)中研究了传热和压降,以模拟在发动机前缘附近的冷却通道燃气轮机叶片。在四个不同的雷诺数(10000-40000)下测试了三种不同的肋结构(45°,倒置45°和90°),每种具有五种不同的转速(0-400 rpm)。通过改变雷诺数(10000-40000)和旋转速度(0-400 rpm),本研究中达到的旋转数和浮力参数分别为0-0.58和0-2.3。 45?倾斜的肋条在固定条件下显示出最高的热性能。 90?肋在最高转数为0.58时具有最高的热性能。还通过楔形冷却通道(Dh = 2.22cm,Ac = 7.62cm2)实验测量了传热系数,以模拟燃气轮机后缘附近的内部冷却通道叶片,冷却液通过狭缝排放到主流。锥形肋条以45?的攻角放置在前后表面上。肋在相对的壁上以交错布置的方式平行。冷却剂的入口雷诺数从10,000到40,000不等,转速从0到500 rpm不等。入口旋转数为0-1.0。局部旋转数和浮力参数由每个区域的旋转速度和局部雷诺数确定。结果表明,在存在强缝隙喷射的区域附近,传热较高。旋转数和浮力参数都已相互关联,以预测旋转传热的增强。

著录项

  • 作者

    Liu Yao-Hsien;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号