首页> 外文OA文献 >Preconditioning of discontinuous Galerkin methods for second order elliptic problems
【2h】

Preconditioning of discontinuous Galerkin methods for second order elliptic problems

机译:不连续Galerkin方法对二阶椭圆问题的预处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider algorithms for preconditioning of two discontinuous Galerkin (DG)methods for second order elliptic problems, namely the symmetric interior penalty(SIPG) method and the method of Baumann and Oden.For the SIPG method we first consider two-level preconditioners using coarsespaces of either continuous piecewise polynomial functions or piecewise constant (discontinuous)functions. We show that both choices give rise to uniform, with respectto the mesh size, preconditioners. We also consider multilevel preconditioners basedon the same two types of coarse spaces. In the case when continuous coarse spacesare used, we prove that a variable V-cycle multigrid algorithm is a uniform preconditioner.We present numerical experiments illustrating the behavior of the consideredpreconditioners when applied to various test problems in three spatial dimensions.The numerical results confirm our theoretical results and in the cases not covered bythe theory show the efficiency of the proposed algorithms.Another approach for preconditioning the SIPG method that we consider is analgebraic multigrid algorithm using coarsening based on element agglomeration whichis suitable for unstructured meshes. We also consider an improved version of the algorithmusing a smoothed aggregation technique. We present numerical experimentsusing the proposed algorithms which show their efficiency as uniform preconditioners.For the method of Baumann and Oden we construct a preconditioner based onan orthogonal splitting of the discrete space into piecewise constant functions and functions with zero average over each element. We show that the preconditioneris uniformly spectrally equivalent to an appropriate symmetrization of the discreteequations when quadratic or higher order finite elements are used. In the case of linearelements we give a characterization of the kernel of the discrete system and presentnumerical evidence that the method has optimal convergence rates in both L2 andH1 norms. We present numerical experiments which show that the convergence ofthe proposed preconditioning technique is independent of the mesh size.
机译:我们考虑了用于求解二阶椭圆问题的两个不连续Galerkin(DG)方法的预处理算法,即对称内部罚分(SIPG)方法以及Baumann和Oden方法。对于SIPG方法,我们首先考虑使用以下条件的粗糙空间的两级预处理器:连续分段多项式函数或分段常数(不连续)函数。我们表明,相对于网眼大小,这两种选择都会产生均匀的预处理器。我们还考虑了基于相同两种类型的粗糙空间的多层预处理器。在使用连续的粗糙空间的情况下,我们证明了可变V周期多重网格算法是一个统一的预处理器。我们进行了数值实验,说明了当将预处理器应用于三个空间维度的各种测试问题时的行为。数值结果证实了我们理论上的结果以及在理论上未涉及的情况下,都证明了所提算法的有效性。我们考虑的另一种SIPG预处理方法是基于元素聚结的粗化的代数多网格算法,适用于非结构化网格。我们还考虑了使用平滑聚合技术的算法的改进版本。我们使用提出的算法进行数值实验,这些算法显示了它们作为统一预处理器的效率。对于Baumann和Oden的方法,我们基于离散空间的正交分解为分段常数函数和每个元素的平均值为零的函数,构造了预处理器。我们表明,当使用二次或更高阶有限元时,前置条件在频谱上均匀地等同于离散方程的适当对称。在线性元素的情况下,我们给出了离散系统的核的特征,并提供了数值证明,该方法在L2和H1范数中均具有最佳收敛速度。我们目前的数值实验表明,所提出的预处理技术的收敛性与网格尺寸无关。

著录项

  • 作者

    Dobrev Veselin Asenov;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号