首页> 外文OA文献 >Magnetohydrodynamic lattice Boltzmann simulations of turbulence and rectangular jet flow
【2h】

Magnetohydrodynamic lattice Boltzmann simulations of turbulence and rectangular jet flow

机译:湍流和矩形射流的磁流体动力学格子玻尔兹曼模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetohydrodynamic (MHD) investigations of decaying isotropic turbulenceand rectangular jets (RJ) are carried out. A novel MHD lattice Boltzmann scheme thatcombines multiple relaxation time (MRT) parameters for the velocity field with a singlerelaxation time (SRT) parameter for the Maxwell?s stress tensor is developed for thisstudy.In the MHD homogeneous turbulence studies, the kinetic/magnetic energy andenstrophy decays, kinetic enstrophy evolution, and vorticity alignment with the strain-ratetensor are evaluated to assess the key physical MHD turbulence mechanisms. Themagnetic and kinetic energies interact and exchange through the influence of the Lorentzforce work. An initial random fluctuating magnetic field increases the vortex stretchingand forward cascade mechanisms. A strong uniform mean magnetic field increases theanisotropy of the turbulent flow field and causes inverse cascading.In the RJ studies, an investigation into the MHD effects on velocity, instability,and the axis-switching phenomena is performed at various magnetic field strengths andMagnetic Reynolds Numbers. The magnetic field is found to decelerate the jet core,inhibit instability, and prevent axis-switching. The key physical mechanisms are: (i) theexchange of energy between kinetic and magnetic modes and (ii) the magnetic fieldeffect on the vorticity evolution.From these studies, it is found that magnetic field influences momentum, vorticity,and energy evolution and the degree of modification depends on the field strength. Thisinteraction changes vortex evolution, and alters turbulence processes and rectangular jetflow characteristics. Overall, this study provides more insight into the physics of MHDflows, which suggests possible applications of MHD Flow Control.
机译:对衰减的各向同性湍流和矩形射流(RJ)进行了磁流体动力学(MHD)研究。本研究开发了一种新颖的MHD格子Boltzmann方案,该方案将速度场的多个弛豫时间(MRT)参数与麦克斯韦应力张量的单弛豫时间(SRT)参数组合在一起。在MHD均匀湍流研究中,动能/磁能评估了雄激素的衰变,动力学菌的进化以及与应变率张量的涡度对准,以评估关键的物理MHD湍流机制。磁能和动能在洛伦兹力功的影响下相互作用和交换。初始随机波动磁场会增加涡旋拉伸和正向级联机制。强大的均匀平均磁场会增加湍流场的各向异性,并导致反向级联。在RJ研究中,研究了MHD对速度,不稳定性和轴切换现象在各种磁场强度和雷诺数下的影响。 。发现磁场使射流芯减速,抑制不稳定性,并防止轴切换。关键的物理机制是:(i)动力学模式和磁模式之间的能量交换,以及(ii)磁场对涡度演变的影响。从这些研究中发现,磁场影响动量,涡度以及能量演变和程度。修改的数量取决于场强。这种相互作用改变了涡旋的演化,并改变了湍流过程和矩形射流特性。总的来说,这项研究为MHDflows的物理特性提供了更多的见解,这暗示了MHD Flow Control的可能应用。

著录项

  • 作者

    Riley Benjamin Matthew;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号