首页> 外文OA文献 >Characterization of Soil Shrink-Swell Potential Using the Texas VNIR Diffuse Reflectance Spectroscopy Library
【2h】

Characterization of Soil Shrink-Swell Potential Using the Texas VNIR Diffuse Reflectance Spectroscopy Library

机译:利用德州VNIR漫反射光谱库表征土壤的收缩-膨胀势

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Shrinking and swelling soils cause extensive infrastructure and economic damage worldwide. Shrink-swell soils are of great concern in Texas for two reasons, 1) Texas has the most acreage of shrink-swell soils in the United States, and 2) yearly evapotranspiration rates exceed those of precipitation creating optimal conditions for soil wetting and drying cycles. This study was conducted to determine if visible near infrared diffuse reflectance spectroscopy (VNIR-DRS) can be used to predict the coefficient of linear extensibility (COLE) of soils. If successful, VNIR-DRS would provide a means to rapidly and inexpensively quantify a soil?s shrink-swell potential real-time. Using soils that have been previously analyzed and archived in the Texas Agrilife Research Soil Characterization Laboratory, our objectives were to: 1) predict the coefficient of linear extractability (COLE) using spectroscopy, 2) predict COLE using measurements of total clay and cation exchange capacity (CEC), and 3) compare the two models. A total of 2454 soil samples were scanned to create the Texas spectral library. Of these samples, 1296 had COLE measurements. Seventy percent of the COLE samples were randomly selected to build a calibration model using partial least squares regression. The remaining thirty percent were used to validate the calibration model. The coefficient of determination (R2), root mean square deviation (RMSD), and relative percent difference (RPD) were calculated to assess the prediction models. The COLE prediction using spectroscopy had an R2, RMSD, and RPD of 0.61, 0.028, and 1.6, respectively. Using stepwise regression and backward elimination, we determined that CEC and total clay together were the best predictors of COLE with R2, RMSD, and RPD of 0.82, 0.019, and 2.3, respectively. According to the RPD, using spectroscopy to predict COLE has some predictive value, while using CEC and total clay is more effective and stable. However, spectroscopy data collection is more rapid and has fixed costs.
机译:土壤的膨胀和膨胀在全世界范围内造成广泛的基础设施和经济损失。得克萨斯州的收缩膨胀土壤备受关注,其原因有两个:1)德克萨斯州的收缩膨胀土壤面积最多,并且2)年蒸散量超过降水量,为土壤润湿和干燥循环创造了最佳条件。进行这项研究是为了确定可见近红外漫反射光谱法(VNIR-DRS)是否可用于预测土壤的线性扩展系数(COLE)。如果成功,VNIR-DRS将提供一种快速,廉价地实时定量土壤收缩-膨胀潜能的方法。使用先前在得克萨斯州Agrilife研究土壤表征实验室中进行过分析和存档的土壤,我们的目标是:1)使用光谱法预测线性可萃取系数(COLE),2)使用总粘土和阳离子交换量的测量预测COLE (CEC),以及3)比较两个模型。总共扫描了2454个土壤样品,以创建德州光谱库。在这些样本中,有1296个具有COLE测量值。随机选择了百分之七十的COLE样本,以使用偏最小二乘回归建立校正模型。其余的百分之三十用于验证校准模型。计算确定系数(R2),均方根偏差(RMSD)和相对百分比差异(RPD)以评估预测模型。使用光谱的COLE预测的R2,RMSD和RPD分别为0.61、0.028和1.6。通过逐步回归和向后消除,我们确定CEC和总粘土一起是COLE的最佳预测指标,R2,RMSD和RPD分别为0.82、0.019和2.3。根据RPD,使用光谱法预测COLE具有一定的预测价值,而使用CEC和总黏土则更有效,更稳定。但是,光谱数据的收集更加迅速并且成本固定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号