首页> 外文OA文献 >Design of a novel conduction heating based stress-thermal cycling apparatus for composite materials and its utilization to characterize composite microcrack damage thresholds
【2h】

Design of a novel conduction heating based stress-thermal cycling apparatus for composite materials and its utilization to characterize composite microcrack damage thresholds

机译:一种新型的基于传导加热的复合材料应力热循环装置的设计及其在表征复合材料微裂纹损伤阈值中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this research was to determine the effect of thermal cyclingcombined with mechanical loading on the development of microcracks in M40J/PMR-II-50, the second generation aerospace application material. The objective was pursued byfinding the critical controlling parameters for microcrack formation from mechanicalstress-thermal cycling test.Three different in-plane strains (0%, 0.175~0.350%, and 0.325~0.650%) were appliedto the composites by clamping composite specimens (M40J/PMR-II-50, [0,90]s, a unitapecross-ply) on the radial sides of half cylinders having two different radii (78.74mmand 37.96mm). Three different thermal loading experiments, 1) 23oC to ??????196oC to 250oC,2) 23oC to 250oC, and 3) 23oC to -196oC, were performed as a function of mechanical inplanestrain levels, heating rates, and number of thermal cycles. The apparatus generatedcracks related to the in-plane stresses (or strains) on plies. The design and analysisconcept of the synergistic stress-thermal cycling experiment was simplified to obtain main and interaction factors by applying 2k factorial design from the various factorsaffecting microcrack density of M40J/PMR-II-50.Observations indicate that the higher temperature portion of the cycle under loadcauses fiber/matrix interface failure. Subsequent exposure to higher stresses in thecryogenic temperature region results in composite matrix microcracking due to theadditional stresses associated with the fiber-matrix thermal expansion mismatch.
机译:这项研究的目的是确定热循环与机械载荷相结合对第二代航空航天应用材料M40J / PMR-II-50中微裂纹发展的影响。通过从机械应力-热循环试验中找到微裂纹形成的关键控制参数来实现该目标。通过夹紧复合材料试样(M40J)将三种不同的面内应变(0%,0.175〜0.350%和0.325〜0.650%)施加到复合材料上在具有两个不同半径(78.74mm和37.96mm)的半圆柱体的径向上的/ PMR-II-50,[0,90] s,一个单孔交叉层)。进行了三个不同的热负荷实验,它们是机械平面应变等级,加热速率和数量的函数,分别是1)23oC至196oC至250oC,2)23oC至250oC和3)23oC至-196oC。热循环。设备产生的裂纹与层片上的平面内应力(或应变)有关。通过对影响M40J / PMR-II-50微裂纹密度的各种因素应用2k因子设计,简化了协同应力-热循环实验的设计和分析概念,以获取主要因素和相互作用因素。负载下会导致光纤/矩阵接口故障。由于与纤维基质热膨胀失配相关的附加应力,随后在低温温度区域内承受较高的应力会导致复合材料基体微裂纹。

著录项

  • 作者

    Ju Jaehyung;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号