首页> 外文OA文献 >Computational upscaled modeling of heterogeneous porous media flow utilizing finite volume method
【2h】

Computational upscaled modeling of heterogeneous porous media flow utilizing finite volume method

机译:有限体积法计算非均质多孔介质流的放大模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this dissertation we develop and analyze numerical method to solve general elliptic boundary value problems with many scales. The numerical method presented is intended to capture the small scales effect on the large scale solution without resolving the small scale details, which is done through the construction of a multiscale map. The multiscale method is more effective when the coarse element size is larger than the small scale length. To guarantee a numerical conservation, a finite volume element method is used to construct the global problem. Analysis of the multiscale method is separately done for cases of linear and nonlinear coefficients. For linear coefficients, the multiscale finite volume element method is viewed as a perturbation of multiscale finite element method. The analysis uses substantially the existing finite element results and techniques. The multiscale method for nonlinear coefficients will be analyzed in the finite element sense. A class of correctors corresponding to the multiscale method will be discussed. In turn, the analysis will rely on approximation properties of this correctors. Several numerical experiments verifying the theoretical results will be given. Finally we will present several applications of the multiscale method in the flow in porous media. Problems that we will consider are multiphase immiscible flow, multicomponent miscible flow, and soil infiltration in saturated/unsaturated flow.
机译:在本文中,我们开发并分析了解决多种尺度椭圆形边值问题的数值方法。提出的数值方法旨在捕获大型解决方案上的小比例尺,而无需解决小比例尺的细节,这是通过构建多比例尺地图来完成的。当粗略元素尺寸大于小尺度长度时,多尺度方法更有效。为了保证数值守恒,有限体积元法被用来构造整体问题。对于线性系数和非线性系数的情况,分别进行了多尺度方法的分析。对于线性系数,多尺度有限体积元方法被视为对多尺度有限元方法的扰动。该分析基本上使用了现有的有限元结果和技术。非线性系数的多尺度方法将在有限元意义上进行分析。将讨论对应于多尺度方法的一类校正器。反过来,分析将依赖于此校正器的近似属性。将进行一些数值实验,以验证理论结果。最后,我们将介绍多尺度方法在多孔介质流中的几种应用。我们将考虑的问题是多相不混溶流动,多组分混溶流动以及饱和/不饱和流动中的土壤渗透。

著录项

  • 作者

    Ginting Victor Eralingga;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号