首页> 外文OA文献 >Aspects of Interface between Information Theory and Signal Processing with Applications to Wireless Communications
【2h】

Aspects of Interface between Information Theory and Signal Processing with Applications to Wireless Communications

机译:信息论与信号处理之间的接口方面及其在无线通信中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation studies several aspects of the interface between information theory and signal processing. Several new and existing results in information theory are researched from the perspective of signal processing. Similarly, some fundamental results in signal processing and statistics are studied from the information theoretic viewpoint.The first part of this dissertation focuses on illustrating the equivalence between Stein's identity and De Bruijn's identity, and providing two extensions of De Bruijn's identity. First, it is shown that Stein's identity is equivalent to De Bruijn's identity in additive noise channels with specific conditions. Second, for arbitrary but fixed input and noise distributions, and an additive noise channel model, the first derivative of the differential entropy is expressed as a function of the posterior mean, and the second derivative of the differential entropy is expressed in terms of a function of Fisher information. Several applications over a number of fields, such as statistical estimation theory, signal processing and information theory, are presented to support the usefulness of the results developed in Section 2.The second part of this dissertation focuses on three contributions. First, a connection between the result, proposed by Stoica and Babu, and the recent information theoretic results, the worst additive noise lemma and the isoperimetric inequality for entropies, is illustrated. Second, information theoretic and estimation theoretic justifications for the fact that the Gaussian assumption leads to the largest Cramer-Rao lower bound (CRLB) is presented. Third, a slight extension of this result to the more general framework of correlated observations is shown.The third part of this dissertation concentrates on deriving an alternative proof for an extremal entropy inequality (EEI), originally proposed by Liu and Viswanath. Compared with the proofs, presented by Liu and Viswanath, the proposed alternative proof is simpler, more direct, and more information-theoretic. An additional application for the extremal inequality is also provided. Moreover, this section illustrates not only the usefulness of the EEI but also a novel method to approach applications such as the capacity of the vector Gaussian broadcast channel, the lower bound of the achievable rate for distributed source coding with a single quadratic distortion constraint, and the secrecy capacity of the Gaussian wire-tap channel.Finally, a unifying variational and novel approach for proving fundamental information theoretic inequalities is proposed. Fundamental information theory results such as the maximization of differential entropy, minimization of Fisher information (Cramer-Rao inequality), worst additive noise lemma, entropy power inequality (EPI), and EEI are interpreted as functional problems and proved within the framework of calculus of variations. Several extensions and applications of the proposed results are briefly mentioned.
机译:本文研究了信息论与信号处理之间接口的几个方面。从信号处理的角度研究了信息理论中的一些新的和现有的结果。同样,从信息理论的角度研究信号处理和统计的一些基本结果。本论文的第一部分着眼于说明斯坦因身份与德布赖恩身份的等价性,并提供了德布赖恩身份的两个扩展。首先,表明在特定条件下,加性噪声通道中斯坦因的身份等同于德布鲁因的身份。其次,对于任意但固定的输入和噪声分布,以及加性噪声通道模型,微分熵的一阶导数表示为后均值的函数,而微分熵的二阶导数则表示为函数Fisher信息。为了支持第二部分中得出的结果的有用性,提出了统计估计理论,信号处理和信息理论等许多领域的应用。本文的第二部分着重于三个方面。首先,说明了Stoica和Babu提出的结果与最近的信息理论结果,最差的加性噪声​​引理和熵的等算不等式之间的联系。其次,针对高斯假设导致最大的Cramer-Rao下界(CRLB)的事实,提供了信息理论和估计理论依据。第三,该结果略微扩展到了相关观测的更一般的框架。本论文的第三部分着重于推导由Liu和Viswanath最初提出的极值熵不等式(EEI)的替代证明。与Liu和Viswanath提出的证明相比,拟议的替代证明更简单,更直接,更具有信息论性。还提供了极端不平等的其他应用。此外,本节不仅说明了EEI的实用性,而且还介绍了一种新颖的方法来处理应用,例如矢量高斯广播信道的容量,具有单个二次失真约束的分布式源编码可达到的速率下限,以及最后,提出了一种统一的变分和新颖的方法来证明基本信息理论上的不等式。基本信息理论的结果,例如微分熵的最大化,Fisher信息的最小化(Cramer-Rao不等式),最差加性噪声引理,熵权不等式(EPI)和EEI被解释为功能性问题,并在微积分的框架内得到证明。变化。简要介绍了建议结果的一些扩展和应用。

著录项

  • 作者

    Park Sang Woo;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号