首页> 外文OA文献 >3D Multi-Field Multi-Scale Features From Range Data In Spacecraft Proximity Operations
【2h】

3D Multi-Field Multi-Scale Features From Range Data In Spacecraft Proximity Operations

机译:航天器接近操作中距离数据的3D多场多尺度特征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A fundamental problem in spacecraft proximity operations is the determination of the 6 degree of freedom relative navigation solution between the observer reference frame and a reference frame tied to a proximal body. For the most unconstrained case, the proximal body may be uncontrolled, and the observer spacecraft has no apriori information on the body. A spacecraft in this scenario must simultaneously map the generally poorly known body being observed, and safely navigate relative toit. Simultaneous localization and mapping(SLAM)is a difficult problem which has been the focus of research in recent years. The most promising approaches extractlocal features in 2D or 3D measurements and track them in subsequent observations by means of matching a descriptor. These methods exist for both active sensors such as Light Detection and Ranging(LIDAR) or laser RADAR(LADAR), and passive sensors such as CCD and CMOS camera systems. This dissertation presents a method for fusing time of flight(ToF) range data inherent to scanning LIDAR systems with the passive light field measurements of optical systems, extracting features which exploit information from each sensor, and solving the unique SLAM problem inherent to spacecraft proximity operations. Scale Space analysis is extended to unstructured 3D point clouds by means of an approximation to the Laplace Beltrami operator which computes the scale space on a manifold embedded in 3D object space using Gaussian convolutions based on a geodesic distance weighting. The construction of the scale space is shown to be equivalent to both the application of the diffusion equation to the surface data, as well as the surface evolution process which results from mean curvature flow. Geometric features are localized in regions of high spatial curvature or large diffusion displacements at multiple scales. The extracted interest points are associated with a local multi-field descriptor constructed from measured data in the object space. Defining features in object space instead of image space is shown to bean important step making the simultaneous consideration of co-registered texture and the associated geometry possible. These descriptors known as Multi-Field Diffusion Flow Signatures encode the shape, and multi-texture information of local neighborhoods in textured range data. Multi-Field Diffusion Flow Signatures display utility in difficult space scenarios including high contrast and saturating lighting conditions, bland and repeating textures, as well as non-Lambertian surfaces. The effectiveness and utility of Multi-Field Multi-Scale(MFMS) Features described by Multi-Field Diffusion Flow Signatures is evaluated using real data from proximity operation experiments performed at the Land Air and Space Robotics(LASR) Laboratory at Texas A&M University.
机译:航天器接近操作中的一个基本问题是确定观察者参考系和与近端物体相连的参考系之间的6自由度相对导航解。对于最不受约束的情况,近端主体可能不受控制,并且观察器航天器在主体上没有先验信息。在这种情况下,航天器必须同时绘制正在观察的通常鲜为人知的物体,并相对于它安全地导航。同时定位和制图(SLAM)是一个难题,近年来一直是研究的重点。最有前途的方法在2D或3D测量中提取局部特征,并通过匹配描述符在后续观察中跟踪它们。这些方法既适用于诸如光检测和测距(LIDAR)或激光RADAR(LADAR)之类的有源传感器,也适用于诸如CCD和CMOS摄像头系统之类的无源传感器。本文提出了一种方法,用于融合扫描LIDAR系统固有的飞行时间(ToF)距离数据与光学系统的无源光场测量,提取利用每个传感器信息的特征以及解决航天器接近操作固有的独特SLAM问题。借助Laplace Beltrami算子的近似,将尺度空间分析扩展到了非结构化3D点云,该算子使用基于测地距离加权的高斯卷积来计算嵌入3D对象空间中的流形上的尺度空间。标度空间的构造被显示为等同于将扩散方程应用于表面数据,以及等效于平均曲率流产生的表面演化过程。几何特征位于多个尺度的高空间曲率或大扩散位移区域中。提取的兴趣点与根据对象空间中的测量数据构造的局部多字段描述符关联。在对象空间而不是图像空间中定义特征显示出重要的一步,这使得同时考虑共同注册的纹理和关联的几何成为可能。这些称为“多场扩散流签名”的描述符对纹理范围数据中的形状和局部邻域的多纹理信息进行编码。多场扩散流签名在困难的空间场景中显示实用程序,包括高对比度和饱和照明条件,平淡和重复的纹理以及非朗伯表面。多场扩散流签名所描述的多场多尺度(MFMS)功能的有效性和实用性,是使用得克萨斯A&M大学的陆地空气与空间机器人技术(LASR)实验室进行的接近操作实验的真实数据进行评估的。

著录项

  • 作者

    Flewelling Brien Roy;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号