首页> 外文OA文献 >Power laws, memory capacity, and self-tuned critical branching in an LIF model with binary synapses
【2h】

Power laws, memory capacity, and self-tuned critical branching in an LIF model with binary synapses

机译:具有二进制突触的LIF模型中的幂律,存储器容量和自调整的关键分支

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Both fluctuations and distributions of spontaneous neural spiking activity have been observed to closely follow a variety of power laws. Multiple explanations have been offered for each observation, but few lead to mechanisms that encompass their widespread occurrence. A canonical, leaky integrate-and-fire model is presented in which synapses are updated based on the timing of pre- and post-synaptic spikes in order to maintain a state of critical branching. Results showed that 1) the self-tuning algorithm maintained critical branching under a range of parameters; 2) power laws were obtained in spiking activity fluctuations (1/f scaling), size distributions of network bursts (neural avalanches), and temporal correlations in interspike intervals (Allan factor); 3) power laws disappeared once the self-tuning algorithm was disabled; and 4) critical branching was adaptive in that it maximized the network’s memory capacity when assessed as a liquid state machine.
机译:已经观察到自发性神经突刺活动的波动和分布都严格遵循各种幂定律。对于每种观察都提供了多种解释,但是很少有导致涵盖其广泛发生的机制的解释。提出了一种规范的,泄漏的集成和发射模型,其中基于突触前和突触后尖峰的时间更新突触,以维持关键分支的状态。结果表明:1)自整定算法在一定范围的参数下保持了临界分支; 2)在尖峰活动波动(1 / f缩放),网络突发的大小分布(神经雪崩)和尖峰间隔中的时间相关性(艾伦因子)中获得了幂律。 3)一旦禁用自整定算法,功率定律就会消失;和4)关键分支是自适应的,因为当评估为液态计算机时,它可以最大化网络的存储容量。

著录项

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号