首页> 外文OA文献 >Ladder Operators, Inherent Algebras and Associated Coherent States for Position-dependent Mass Systems
【2h】

Ladder Operators, Inherent Algebras and Associated Coherent States for Position-dependent Mass Systems

机译:位置相关质量系统的阶梯算子,固有代数和相关相干态

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Position-dependent e?ective mass systems are of great signi?cance due to the fact that these models have numerous applications in various areas of physics. The qualitative understanding of a complicated realistic system can be acquired by analyzing the exact solutions of a related simpli?ed model. However, the quantization of position-dependent e?ective mass systems and ?nding their solutions, involve some conceptual and mathematical di?culties of a fundamental nature. The factorization method provides us with a powerful tool for obtaining solutions and the underlying algebraic structure of the exactly solvable systems. The underlying algebra of a system has vast applications in di?erent areas of mathematics and physics, such as it plays an important role in the theory of coherent states. Coherent states are extremely useful in various areas such as quantum mechanics, quantum optics, quantum information and group theory. Inthisthesis, position-dependente?ectivemasssystemsarestudiedinthecontextoftheir quantization, ?nding the solutions, construction of the algebraic structure and associated coherent states. In the ?rst part of the thesis we mainly focus on quantizing and obtaining the exact solutions of the systems with spatially varying mass. The next part deals with the construction of the ladder operators and the inherent algebra of the pertaining systems. The associated coherent states and their properties are presented in the ?nal part of the thesis. Beside the traditional way of obtaining exact solutions by solving the Schrödinger equation there exists another elegant method to solve the systems algebraically by factorizing the corresponding Hamiltonian. This method is based on supersymmetric quantum mechanics and the integrability condition, commonly known as shape invariance. After quantizing the position-dependent e?ective mass system, this factorization technique is used to determine the energy spectrum and the corresponding wave functions. For the sake of completeness theudmethod of solving a time-independent Schrödinger equation with spatially varying mass is also discussed. Considering a non-linear harmonic oscillator as an illustrative example, it is shown that both the above procedures produce the same results. The property of shape invariance enables us to obtain the ladder operators of the con?ning system. A general recipe for the construction of the ladder operators and inherent algebra for the position-dependent e?ective mass systems is presented. In order to exemplify the general formalism, a non-linear harmonic oscillator together with several other examples of the shape invariant systems with position-dependent e?ective mass is considered. Explicit expressions for the ladder operators and the associated algebra are presented. Usingtheladderoperatorsandtheunderlyingalgebra,thecoherentstatesforthepositiondependent e?ective mass systems are constructed and their properties are analyzed. In particular, we emphasize on various kinds of coherent states for a non-linear harmonic oscillator with spatially varying mass. By realizing SU(1,1) as the dynamic group of the system, the construction of Barut-Girardello coherent states is presented. In addition, an algebraic independent kind of coherent states, namely Gazeau-Klauder coherent states, are also constructed. The statistical properties of Barut-Girardello and Gazeau-Klauder coherent states are investigated by means of the Mandel parameter and the second order correlation function. Moreover, the temporal evolution of the Gazeau-Klauder coherent states is analysed by means of autocorrelation function. It is shown that these states mimic the phenomena of quantum revivals and fractional revivals during their time evolution
机译:由于这些模型在物理的各个领域都有大量的应用,因此与位置相关的有效质量系统具有重大意义。通过分析相关简化模型的精确解,可以获得对复杂现实系统的定性理解。但是,位置相关的有效质量系统的量化及其解决方案涉及一些基本性质的概念和数学难题。因子分解方法为我们提供了一个功能强大的工具,可用于获取可精确求解的系统的解和基本代数结构。系统的基础代数在数学和物理的不同领域都有广泛的应用,例如它在相干态理论中起着重要的作用。相干态在诸如量子力学,量子光学,量子信息和群论等各个领域中非常有用。本文在量化的背景下研究了位置相关的有效质量系统,找到了解,代数结构和相关相干态的构造。在本文的第一部分中,我们主要集中于量化和获得具有空间变化质量的系统的精确解。下一部分讨论梯形算子的构造以及相关系统的固有代数。在论文的最后部分介绍了相关的相干态及其性质。除了通过求解薛定ding方程获得精确解的传统方法之外,还有另一种优雅的方法是通过分解相应的哈密顿量来代数求解系统。该方法基于超对称量子力学和可积性条件,通常称为形状不变性。在量化与位置相关的有效质量系统后,该分解技术用于确定能谱和相应的波函数。为了完整起见,还讨论了求解质量随空间变化的与时间无关的薛定ding方程的方法。以非线性谐波振荡器为例,表明上述两个过程产生相同的结果。形状不变性的性质使我们能够获得约束系统的阶梯算子。提出了构造与位置相关的有效质量系统的阶梯算子和固有代数的一般方法。为了举例说明一般形式,考虑了非线性谐波振荡器以及具有位置相关有效质量的形状不变系统的其他几个示例。给出了梯形算子和相关代数的显式表达式。使用梯子算子和下层代数,构造与位置相关的有效质量系统的相干状态,并分析其性质。特别地,我们着重于具有空间变化质量的非线性谐波振荡器的各种相干态。通过将SU(1,1)实现为系统的动态组,提出了Barut-Girardello相干态的构造。另外,还构造了代数无关的一种相干态,即Gazeau-Klauder相干态。利用Mandel参数和二阶相关函数研究了Barut-Girardello和Gazeau-Klauder相干态的统计性质。此外,通过自相关函数分析了Gazeau-Klauder相干态的时间演化。结果表明,这些状态模仿了量子复活和分数复活的时间演化现象。

著录项

  • 作者

    Naila Amir .;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号