首页> 外文OA文献 >A partition-based approach towards constructing Galois (concept) lattices
【2h】

A partition-based approach towards constructing Galois (concept) lattices

机译:基于分区的构造Galois(概念)晶格的方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Galois lattices and formal concept analysis of binary relations have proved useful in the resolution of many problems of theoretical or practical interest. Recent studies of practical applications in data mining and software engineering have put the emphasis on the need for both efficient and flexible algorithms to construct the lattice. Our paper presents a novel approach for lattice construction based on the apposition of binary relation fragments. We extend the existing theory to a complete characterization of the global Galois (concept) lattice as a substructure of the direct product of the lattices related to fragments. The structural properties underlie a procedure for extracting the global lattice from the direct product, which is the basis for a full-scale lattice construction algorithm implementing a divide-and-conquer strategy. The paper provides a complexity analysis of the algorithm together with some results about its practical performance and describes a class of binary relations for which the algorithm outperforms the most efficient lattice-constructing methods.
机译:事实证明,伽罗瓦格和二元关系形式形式的概念分析对于解决许多理论或实际问题具有帮助。对数据挖掘和软件工程中的实际应用的最新研究已将重点放在同时需要高效且灵活的算法来构建网格上。我们的论文提出了一种基于二元关系片段并置的晶格构造的新方法。我们将现有理论扩展到对整体伽罗瓦(概念)晶格的完整刻画,作为与碎片相关的晶格直接积的子结构。结构特性是从直接积中提取全局晶格的过程的基础,这是实现分而治之策略的全尺寸晶格构建算法的基础。本文提供了对该算法的复杂性分析,以及有关其实际性能的一些结果,并描述了一类二元关系,该类二元关系优于最有效的晶格构造方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号