首页> 外文OA文献 >Principal Components of Heritability for High Dimension Quantitative Traits and General Pedigrees
【2h】

Principal Components of Heritability for High Dimension Quantitative Traits and General Pedigrees

机译:高维定量性状和遗传谱系的遗传力主要成分

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For many complex disorders, genetically relevant disease definition is still unclear. For this reason, researchers tend to collect large numbers of items related directly or indirectly to the disease diagnostic. Since the measured traits may not be all influenced by genetic factors, researchers are faced with the problem of choosing which traits or combinations of traits to consider in linkage analysis. To combine items, one can subject the data to a principal component analysis. However, when family date are collected, principal component analysis does not take family structure into account. In order to deal with these issues, Ott & Rabinowitz (1999) introduced the principal components of heritability (PCH), which capture the familial information across traits by calculating linear combinations of traits that maximize heritability. The calculation of the PCHs is based on the estimation of the genetic and the environmental components of variance. In the genetic context, the standard estimators of the variance components are Lange's maximumudlikelihood estimators, which require complex numerical calculations. The objectives of this paper are the following: i) to review some standard strategies available in the literature to estimate variance components for unbalanced data in mixed models; ii) to propose an ANOVA method for a genetic random effect model to estimate the variance components, which can be applied to general pedigrees and high dimensional family data within the PCH framework; iii) to elucidate the connection between PCH analysis and Linear Discriminant Analysis. We use computer simulations to show that the proposed method has similar asymptotic properties as Lange's method when the number of traits is small, and we study the efficiency of our method when the number of traits is large. A data analysis involving schizophrenia and bipolar quantitative traits is finally presented to illustrate the PCH methodology.
机译:对于许多复杂的疾病,遗传相关疾病的定义仍不清楚。因此,研究人员倾向于收集大量与疾病诊断直接或间接相关的项目。由于测得的性状可能并非全部受遗传因素影响,因此研究人员面临选择连锁分析中要考虑哪些性状或性状组合的问题。要组合项目,可以对数据进行主成分分析。但是,在收集家庭日期时,主成分分析未考虑家庭结构。为了解决这些问题,Ott&Rabinowitz(1999)引入了遗传力(PCH)的主要组成部分,即通过计算使遗传力最大化的性状的线性组合来捕获各种性状的家族信息。 PCH的计算基于变异的遗传和环境成分的估计。在遗传背景下,方差分量的标准估计量是Lange的最大似然估计量,这需要复杂的数值计算。本文的目标如下:i)回顾一些文献中可用的标准策略,以估计混合模型中不平衡数据的方差分量; ii)为遗传随机效应模型提出方差分析方法,以估计方差分量,该方法可应用于PCH框架内的一般谱系和高维家庭数据; iii)阐明PCH分析和线性判别分析之间的联系。我们使用计算机模拟表明,当特征数量少时,该方法具有与Lange方法相似的渐近性质,并且当特征数量大时,我们研究了该方法的效率。最后介绍了精神分裂症和双相定量性状的数据分析,以说明PCH方法学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号