首页> 外文OA文献 >Scaling, normalizing, and per ratio standards: an allometric modeling approach.
【2h】

Scaling, normalizing, and per ratio standards: an allometric modeling approach.

机译:缩放,规格化和按比例标准:一种异速建模方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The practice of scaling or normalizing physiological variables (Y) by dividing the variable by an appropriate body size variable (X) to produce what is known as a "per ratio standard" (Y/ X), has come under strong criticism from various authors. These authors propose an alternative regression standard based on the linear regression of (Y) on (X) as the predictor variable. However, if linear regression is to be used to adjust such physiological measurements (Y), the residual errors should have a constant variance and, in order to carry out parametric tests of significance, be normally distributed. Unfortunately, since neither of these assumptions appear to be satisfied for many physiological variables, e.g., maximum oxygen uptake, peak and mean power, an alternative approach is proposed of using allometric modeling where the concept of a ratio is an integral part of the model form. These allometric models naturally help to overcome the heteroscedasticity and skewness observed with per ratio variables. Furthermore, if per ratio standards are to be incorporated in regression models to predict other dependent variables, the allometric or log-linear model form is shown to be more appropriate than linear models. By using multiple regression, simply by taking logarithms of the dependent variable and entering the logarithmic transformed per ratio variables as separate independent variables, the resulting estimated log-linear multiple-regression model will automatically provide the most appropriate per ratio standard to reflect the dependent variable, based on the proposed allometric model.
机译:通过将变量除以适当的体型变量(X)来缩放或归一化生理变量(Y)的做法,产生了所谓的“按比例标准”(Y / X),受到了许多作者的强烈批评。 。这些作者提出了基于(X)上(Y)的线性回归作为预测变量的替代回归标准。但是,如果要使用线性回归来调整此类生理测量值(Y),则残留误差应具有恒定的方差,并且为了进行有意义的参数检验,必须正态分布。不幸的是,由于这些假设似乎无法满足许多生理变量(例如最大摄氧量,峰值和平均功率)的要求,因此提出了一种替代方法,即使用比率法建模,其中比率的概念是模型形式的组成部分。这些异速测量模型自然有助于克服每个比率变量所观察到的异方差和偏度。此外,如果将每个比率标准合并到回归模型中以预测其他因变量,则表明异度线性或对数线性模型形式比线性模型更合适。通过使用多元回归,只需将因变量的对数并将每个比率变量的对数转换为单独的独立变量,所得的估计对数线性多元回归模型将自动提供最合适的每个比率标准以反映因变量,基于提出的异速模型。

著录项

  • 作者单位
  • 年度 1995
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号