首页> 外文OA文献 >High-Performance Publish-Subscribe Matching Using Parallel Hardware
【2h】

High-Performance Publish-Subscribe Matching Using Parallel Hardware

机译:使用并行硬件进行高性能发布 - 订阅匹配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Matching incoming event notifications against received subscriptions are a fundamental part of every publish-subscribe infrastructure. In the case of content-based systems this is a fairly complex and time consuming task, whose performance impacts that of the entire system. In the past, several algorithms have been proposed for efficient content-based event matching. While they differ in most aspects, they have in common the fact of being conceived to run on conventional, sequential hardware. On the other hand, parallel hardware is becoming available off-the-shelf: the number of cores inside CPUs is constantly increasing, and CUDA makes it possible to access the power of GPU hardware for general purpose computing. In this paper, we describe a new publish-subscribe content-based matching algorithm designed to run efficiently both on multicore CPUs and CUDA GPUs. A detailed comparison with two state-of-the-art sequential matching algorithms demonstrates how the use of parallel hardware can bring impressive speedups in content-based matching. At the same time, our analysis identifies the characteristic aspects of multicore and CUDA programming that mostly impact performance.
机译:匹配收到的订阅的传入事件通知是每个发布 - 订阅基础结构的基本部分。在基于内容的系统的情况下,这是一个相当复杂和耗时的任务,其性能会影响整个系统的性能。在过去,已经提出了几种算法用于基于有效的基于内容的事件匹配。虽然它们在大多数方面都有所不同,但它们有共同的事实是在传统的顺序硬件上进行构思的事实。另一方面,并​​行硬件正在现成的可用:CPU内的核心数不断增加,并且CUDA使得可以访问GPU硬件的功率以进行通用计算。在本文中,我们描述了一种新的发布所基于内容的匹配算法,旨在在多核CPU和CUDA GPU上有效运行。与两个最先进的顺序匹配算法进行详细的比较演示了并行硬件的使用如何在基于内容的匹配中带来令人印象深刻的加速。与此同时,我们的分析标识了多核和CUDA编程的特征方面,主要是影响性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号