首页> 外文OA文献 >Uncertainty Quantification for High-Dimensional Sparse Nonparametric Additive Models
【2h】

Uncertainty Quantification for High-Dimensional Sparse Nonparametric Additive Models

机译:高维稀疏非参数的不确定性量化  添加剂模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statistical inference in the high dimensional settings has recently attractedenormous attention from the literature. However, most of the published workfocuses on the parametric linear regression problem. This paper considers animportant extension of this problem: statistical inference for high dimensionalsparse nonparametric additive models. To be more specific, this paper developsa methodology for constructing a probability density function on the set of allcandidate models. This methodology can also be applied to construct confidenceintervals for the model parameters and confidence bands for the additivefunctions. This methodology is derived using the generalized fiducial inferenceframework. It is shown that results produced by the proposed methodology enjoycorrect asymptotic frequentist property. Empirical results obtained fromnumerical experimentation verify this theoretical claim. Lastly, themethodology is applied to a gene expression data set and discovered newfindings for which most existing methods based on parametric linear modelingfailed to observe.
机译:高维设置中的统计推断最近从文献中引起了竞争。但是,大多数已发布的工作小区在参数线性回归问题上。本文考虑了这个问题的动画扩展:高维度的统计推断非参数添加剂模型。更具体地,本文开发了用于构建该组Allcandandidate模型上的概率密度函数的方法。该方法也可以应用于构建模型参数和置信带的置信度和置信度。使用广义基准性跟得帧导出该方法。结果表明,由拟议的方法产生的结果享有渐近频率属性的廉价。获得的经验结果从数值实验获得了这种理论索赔。最后,将其应用于基因表达数据集和发现基于参数线性模型的最现有方法的基因表达式数据集和发现的新挑解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号