首页> 外文OA文献 >Lunar floor-fractured craters: Modes of dike and sill emplacement and implications of gas production and intrusion cooling on surface morphology and structure
【2h】

Lunar floor-fractured craters: Modes of dike and sill emplacement and implications of gas production and intrusion cooling on surface morphology and structure

机译:月球地板破碎陨石坑:堤坝和槛板放置模式以及天然气生产和入侵冷却对地表形态和结构的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lunar floor-fractured craters (FFCs) represent the surface manifestation of a class of shallow crustal intrusions in which magma-filled cracks (dikes) rising to the surface from great depth encounter contrasts in host rock lithology (breccia lens, rigid solidified melt sheet) and intrude laterally to form a sill, laccolith or bysmalith, thereby uplifting and deforming the crater floor. Recent developments in the knowledge of lunar crustal thickness and density structure have enabled important revisions to models of the generation, ascent and eruption of magma, and new knowledge about the presence and behavior of magmatic volatiles has provided additional perspectives on shallow intrusion processes in FFCs. We use these new data to assess the processes that occur during dike and sill emplacement with particular emphasis on tracking the fate and migration of volatiles and their relation to candidate venting processes. FFCs result when dikes are capable of intruding close to the surface, but fail to erupt because of the substructure of their host impact craters, and instead intrude laterally after encountering a boundary where an increase in ductility (base of breccia lens) or rigidity (base of solidified melt sheet) occurs. Magma in dikes approaching the lunar surface experiences increasingly lower overburden pressures: this enhances CO gas formation and brings the magma into the realm of the low pressure release of H2O and sulfur compounds, both factors adding volatiles to those already collected in the rising low-pressure part of the dike tip. High magma rise velocity is driven by the positive buoyancy of the magma in the part of the dike remaining in the mantle. The dike tip overshoots the interface and the consequent excess pressure at the interface drives the horizontal flow of magma to form the intrusion and raise the crater floor. If sill intrusion were controlled by the physical properties at the base of the melt sheet, dikes would be required to approach to within ∼300 m of the surface, and thus eruptions, rather than intrusions, would be very likely to occur; instead, dynamical considerations strongly favor the sub-crustal breccia lens as the location of the physical property contrast localizing lateral intrusion, at a depth of several kilometers. The end of lateral and vertical sill growth occurs when the internal magma pressure equals the external pressure (the intrusion just supports the weight of the overlying crust). Dynamical considerations lead to the conclusion that dike magma volumes are up to ∼1100 km3, and are generally insufficient to form FFCs on the lunar farside; the estimated magma volumes available for injection into sills on the lunar nearside (up to ∼800 km3) are comparable to the observed floor uplift in many smaller FFCs, and thus consistent with these FFCs forming from a single dike emplacement event. In contrast, the thickest intrusions in the largest craters imply volumes requiring multiple dike contributions; these are likely to be events well-separated in time, rather than injection of new magma into a recently-formed and still-cooling intrusion. We present a temporal sequence of 1) dike emplacement, 2) sill formation and surface deformation, 3) bubble rise, foam layer formation and collapse, 4) intrusion cooling, and a synthesis of predicted deformation sequence and eruption styles. Initial lateral injection of the sill at a depth well below the upper dike tip initiates upbowing of the overburden, leveraging deformation of the crater floor melt sheet above. This is followed by lateral spreading of the sill toward the edges of the crater floor, where crater wall and rim deposit overburden inhibit further lateral growth, and the sill grows vertically into a laccolith or bysmalith, uplifting the entire floor above the intrusion. Subsidiary dikes can be emplaced in the fractures at the uplift margins and will rise to the isostatic level of the initial dike tip; if these contain sufficient volatiles to decrease magma density, eruptions can also occur. This initial phase of intrusion, sill lateral spreading and floor uplift occurs within a few hours after initial dike emplacement. During the subsequent cooling of the sill, bubbles can rise hundreds of meters to the top of the intrusion to create a foam layer; when drainage of gas bubble wall magma occurs in the foam layer, a continuous gas layer forms above the foam. Gas formation and upward migration produces an increase in sill thickness, while subsequent cooling and solidification cause a thickness decreases and subsidence. The total topographic evolution history, following an initial 2 km thick sill intrusion and floor uplift (hours), includes further floor uplift by gas formation and migration (decades; ∼30 m), followed by cooling, solidification and subsidence (∼a century; ∼350 m). An initial 2 km thick sill is predicted to have a final thickness of ∼1.7 km. This predicted sequence of events can be compared with the sequence of floor deformation and volcanism in FFCs in order to test and refine this model.
机译:月球底板断裂陨石坑 (FFC) 代表了一类浅地壳侵入体的表面表现形式,其中充满岩浆的裂缝(岩脉)从很深的深处上升到地表,与主岩岩性(角砾透镜、刚性凝固熔体片)形成对比。并横向侵入形成窗台、石板或石板,从而抬升和变形火山口底部。月球地壳厚度和密度结构知识的最新发展使得对岩浆生成、上升和喷发模型的重要修订成为可能,而关于岩浆挥发物存在和行为的新知识为 FFC 中的浅层侵入过程提供了额外的视角。我们使用这些新数据来评估堤坝和窗台就位期间发生的过程,特别强调跟踪挥发物的归宿和迁移及其与候选排放过程的关系。当堤坝能够靠近地表侵入,但由于其主撞击坑的下部结构而未能喷发,而是在遇到延展性(角砾透镜的底部)或刚度(底部)增加的边界后横向侵入时,就会产生 FFC固化的熔体片)发生。接近月球表面的堤坝中的岩浆经历越来越低的上覆压力:这增强了 CO 气体的形成并使岩浆进入低压释放 H2O 和硫化合物的领域,这两个因素都会增加已在上升低压中收集的挥发物堤坝尖的一部分。高岩浆上升速度是由留在地幔中的岩脉部分中岩浆的正浮力驱动的。岩脉尖端超过界面,界面处随之产生的超压驱动岩浆水平流动,形成侵入体并抬高火山口底部。如果通过熔体底部的物理性质来控制地基侵入,则需要堤防接近地表约300 m,因此很可能发生喷发而不是侵入;相反,动力学方面的考虑强烈倾向于将地壳下角砾岩透镜作为物理性质对比的位置,定位横向侵入,深度为几公里。当内部岩浆压力等于外部压力(侵入体仅支撑上覆地壳的重量)时,横向和垂直地基生长的结束发生。动力学考虑得出的结论是,堤坝岩浆体积高达 1100 平方公里,通常不足以在月球背面形成 FFC;估计可注入月球近侧(高达 800 平方公里)的岩浆的岩浆体积与在许多较小的 FFC 中观察到的底板隆起相当,因此与这些 FFC 由单个堤防就位事件形成的结果一致。相比之下,最大陨石坑中最厚的侵入体意味着需要多个堤坝贡献的体积;这些很可能是时间间隔很好的事件,而不是将新的岩浆注入最近形成且仍在冷却的侵入体中。我们提出了 1) 堤坝就位、2) 地基形成和地表变形、3) 气泡上升、泡沫层形成和坍塌、4) 侵入冷却以及预测变形序列和喷发方式的综合的时间序列。在远低于上堤坝尖端的深度处初始横向注入门槛,启动覆盖层的上升,利用上方火山口底部熔体的变形。随后,门槛向火山口底部的边缘横向扩展,其中火山口壁和边缘沉积覆盖层抑制了进一步的横向生长,并且门槛垂直生长成一个laccolith或bysmalith,抬升了侵入物上方的整个地板。副堤可以在隆起边缘的裂缝中就位,并会上升到初始堤端的等压水平;如果这些含有足够的挥发物来降低岩浆密度,也会发生喷发。初始阶段的侵入、门槛横向扩展和地板抬升发生在初始堤防安置后的几个小时内。在随后的门槛冷却过程中,气泡可以上升数百米到侵入物的顶部,形成泡沫层;当泡沫层中出现气泡壁岩浆排出时,在泡沫上方形成连续的气层。气体的形成和向上迁移导致基岩厚度增加,而随后的冷却和凝固导致厚度减小和下沉。在最初 2 公里厚的基岩侵入和底板抬升(小时)之后,总的地形演化历史包括由气体形成和运移引起的进一步底板抬升(几十年;~30 m),然后是冷却、凝固和沉降(~一个世纪;约 350 m)。预计最初 2 公里厚的窗台最终厚度约为 1.7 公里。这个预测的事件序列可以与序列进行比较FFC 中的地板变形和火山作用的 ce,以测试和改进该模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号