首页> 外文OA文献 >On joint estimation of Gaussian graphical models for spatial and temporal data
【2h】

On joint estimation of Gaussian graphical models for spatial and temporal data

机译:关于空间与空间高斯图模型的联合估计  时态数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we first propose a Bayesian neighborhood selection method toestimate Gaussian Graphical Models (GGMs). We show the graph selectionconsistency of this method in the sense that the posterior probability of thetrue model converges to one. When there are multiple groups of data available,instead of estimating the networks independently for each group, jointestimation of the networks may utilize the shared information among groups andlead to improved estimation for each individual network. Our method is extendedto jointly estimate GGMs in multiple groups of data with complex structures,including spatial data, temporal data and data with both spatial and temporalstructures. Markov random field (MRF) models are used to efficientlyincorporate the complex data structures. We develop and implement an efficientalgorithm for statistical inference that enables parallel computing. Simulationstudies suggest that our approach achieves better accuracy in networkestimation compared with methods not incorporating spatial and temporaldependencies when there are shared structures among the networks, and that itperforms comparably well otherwise. Finally, we illustrate our method using thehuman brain gene expression microarray dataset, where the expression levels ofgenes are measured in different brain regions across multiple time periods.
机译:在本文中,我们首先提出了一种贝叶斯邻域选择方法,以获得高斯图形模型(GGM)。我们在该方法中显示了这种方法的图选择,即将该模型的后验概率收敛到一个。当存在多组可用数据时,代替为每个组独立地估计网络,网络的共享可以利用组之间的共享信息,以改善每个网络的估计。我们的方法在具有复杂结构的多组数据中扩展到联合估计GGM,包括空间数据,时间数据和具有空间和颞下结构的数据。马尔可夫随机字段(MRF)模型用于高效地委托复杂数据结构。我们开发并实现了实现并行计算的统计推理的有效算法。仿真学结果表明,与在网络之间存在共享结构的方法时,我们的方法在网络中实现了更好的网络中的准确性,并且在网络中共享结构时,否则相当良好。最后,我们说明了我们使用该胰岛脑基因表达微阵列数据集的方法,其中在多个时间段的不同脑区域中测量了表达水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号