首页> 外文OA文献 >Calibration of Spatially Distributed Hydrological Processes and Model Parameters in SWAT Using Remote Sensing Data and an Auto-Calibration Procedure: A Case Study in a Vietnamese River Basin
【2h】

Calibration of Spatially Distributed Hydrological Processes and Model Parameters in SWAT Using Remote Sensing Data and an Auto-Calibration Procedure: A Case Study in a Vietnamese River Basin

机译:遥感数据及自动校准过程校准空间分布水文过程及SWAT模型参数:越南河流域案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, evapotranspiration (ET) and leaf area index (LAI) were used to calibrate the SWAT model, whereas remotely sensed precipitation and other climatic parameters were used as forcing data for the 6300 km2 Day Basin, a tributary of the Red River in Vietnam. The efficacy of the Sequential Uncertainty Fitting (SUFI-2) parameter sensitivity and optimization model was tested with area specific remote sensing input parameters for every Hydrological Response Units (HRU), rather than with measurements of river flow representing a large set of HRUs, i.e., a bulk calibration. Simulated monthly ET correlations with remote sensing estimates showed an R2 = 0.71, Nash–Sutcliffe Efficiency NSE = 0.65, and Kling Gupta Efficiency KGE = 0.80 while monthly LAI showed correlations of R2 = 0.59, NSE = 0.57 and KGE = 0.83 over a five-year validation period. Accumulated modelled ET over the 5-year calibration period amounted to 5713 mm compared to 6015 mm of remotely sensed ET, yielding a difference of 302 mm (5.3%). The monthly flow at two flow measurement stations were adequately estimated (R2 = 0.78 and 0.55, NSE = 0.71 and 0.63, KGE = 0.59 and 0.75 for Phu Ly and Ninh Binh, respectively). This outcome demonstrates the capability of SWAT model to obtain spatial and accurate simulation of eco-hydrological processes, also when rivers are ungauged and the water withdrawal system is complex.
机译:在本文中,使用蒸散(ET)和叶区域指数(LAI)来校准SWAT模型,而远程感测的降水和其他气候参数被用作6300平方公司的迫使数据,这是红河的支流越南。序列不确定拟合(SUFI-2)参数灵敏度和优化模型的功效对于每个水文响应单元(HRU)的区域特定遥感输入参数测试,而不是测量代表一组大集的河流,即,批量校准。与遥感估计的模拟每月ET相关性显示R2 = 0.71,NASH-SUTCLIFFE效率NSE = 0.65,以及Kling GUPTA效率KGE = 0.80,而月LAI显示R2 = 0.59,NSE = 0.57和KGE = 0.83的相关性年份验证期。与5年校准周期相比,累计的模型ET量为5713毫米,与6015mm的远程感测到的ET,产生302 mm(5.3%)的差异。两个流量测量站的每月流量被充分估计(R2 = 0.78和0.55,NSE = 0.71和0.63,KGE = 0.59和0.75,用于PHU LY和NinH BinH)。该结果表明了SWAT模型以获得的空间和准确模拟生态水文过程的能力,而且当河流未被损失并且水抽出系统复杂时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号