首页> 外文OA文献 >Elucidation of Nitrate Reduction Mechanisms on a Pd-In Bimetallic Catalyst using Isotope Labeled Nitrogen Species
【2h】

Elucidation of Nitrate Reduction Mechanisms on a Pd-In Bimetallic Catalyst using Isotope Labeled Nitrogen Species

机译:使用同位素标记氮物质阐明Pd-in二金属催化剂对Pd-二微金属催化剂的阐明

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Catalytic hydrogenation over Pd-based catalysts has emerged as an effective treatment approach for nitrate (NO3-) removal, but its full-scale application for direct treatment of drinking water or ion exchange regenerant brines requires improved selectivity for the end-product dinitrogen (N2) over toxic ammonia species (NH4+, NH3). A key to improving N2 versus NH4+ production is to elucidate nitrate reduction pathways and identify the key intermediate(s) that determine selectivity. To address this challenge, aqueous reduction experiments with an Al2O3-supported Pd/In bimetallic catalyst were conducted using isotope-labeled nitrite (15NO2-), the first reduction intermediate of NO3-, alone and in combination with unlabeled proposed reduction intermediates (N2O, NO), and using N2O and NO alone, each as a starting reactant. Use of 15N-labeled species eliminated interference from ambient 14N2 when assessing mass balances and product distributions. Simultaneous catalytic reduction of 15NO2- and 14N2O showed no isotope mixing in the final N2 product, demonstrating that N2O does not react with other NO2- reduction intermediates. N2O reduction alone also yielded only N2, verifying that N2O reduction occurs after the reaction step controlling final N2/NH4+ product distribution. In contrast, simultaneous catalytic reduction of 15NO2- and 14NO yielded mixed-labeled N2 (mass 29), and 15NO reduction alone yielded both N2 and NH4+, indicating that NO is a key intermediate involved in determining final product selectivity. N2/NH4+ product selectivity was also evaluated as a function of varying initial 15NO concentration, and results show that selectivity for N2 increases with initial NO concentration to a point, above which product selectivity remains unchanged. This trend is attributed to the increasing importance of N-N pairing reactions leading to N2O formation as the concentration of catalyst-adsorbed NO (NOads) increases to a point of saturating available adsorption sites, above which no further increases in N2 selectivity occur. These results are important because they yield mechanistic insights into the NO3- reduction pathway and information on how catalytic reduction processes can be optimized to maximize N2 production over NH4+.
机译:钯基催化剂上的催化加氢已成为去除硝酸盐(NO3-)的有效方法,但将其大规模应用于饮用水或离子交换再生盐水的直接处理需要提高最终产物二氮(N2)的选择性。 )超过有毒的氨气(NH4 +,NH3)。改善N2与NH4 +产量的关键是阐明硝酸盐还原途径,并确定决定选择性的关键中间体。为了应对这一挑战,使用了同位素标记的亚硝酸盐(15NO2-)和Al2O3负载的Pd / In双金属催化剂进行了水还原实验,NO3的第一种还原中间体单独使用,并与未标记的拟议还原中间体(N2O, NO),并单独使用N2O和NO作为起始反应物。评估质量平衡和产品分布时,使用15N标记的物质消除了环境14N2的干扰。同时催化还原15NO2-和14N2O在最终的N2产品中没有同位素混合,表明N2O不会与其他NO2还原中间体反应。仅N 2 O还原也仅产生N 2,证明了在控制最终N 2 / NH 4 +产物分布的反应步骤之后发生了N 2 O还原。相反,同时催化还原15NO2-和14NO产生混合标记的N2(质量29),而仅15NO还原同时产生N2和NH4 +,表明NO是决定最终产物选择性的关键中间体。还评估了N2 / NH4 +产物选择性作为变化的初始15NO浓度的函数,结果表明,随着初始NO浓度的升高,N2的选择性增加到一个点,在该点以上产物选择性保持不变。这种趋势归因于随着催化剂吸附的NO(NOads)的浓度增加到可利用的吸附位点饱和的程度,导致N2O形成的N-N配对反应的重要性日益增加,在此之上,N2的选择性没有进一步提高。这些结果之所以重要,是因为它们提供了有关NO3-还原途径的机械见解,以及有关如何优化催化还原过程以使NH4 +上的N2产量最大化的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号