首页> 外文OA文献 >Towards Outlier Sensor Detection in Ambient Intelligent Platforms—A Low-Complexity Statistical Approach
【2h】

Towards Outlier Sensor Detection in Ambient Intelligent Platforms—A Low-Complexity Statistical Approach

机译:在环境智能平台中实现异常传感器检测 - 一种低复杂性统计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sensor networks in real-world environments, such as smart cities or ambient intelligent platforms, provide applications with large and heterogeneous sets of data streams. Outliers—observations that do not conform to an expected behavior—has then turned into a crucial task to establish and maintain secure and reliable databases in this kind of platforms. However, the procedures to obtain accurate models for erratic observations have to operate with low complexity in terms of storage and computational time, in order to attend the limited processing and storage capabilities of the sensor nodes in these environments. In this work, we analyze three binary classifiers based on three statistical prediction models—ARIMA (Auto-Regressive Integrated Moving Average), GAM (Generalized Additive Model), and LOESS (LOcal RegrESSion )—for outlier detection with low memory consumption and computational time rates. As a result, we provide 1) the best classifier and settings to detect outliers, based on the ARIMA model, and 2) two real-world classified datasets as ground truths for future research.
机译:传感器网络在现实世界环境中,如智能城市或环境智能平台,提供具有大型和异构数据流的应用。异常值 - 不符合预期行为的观察结果 - 然后转变为在这种平台中建立和维护安全可靠的数据库的重要任务。然而,获得准确模型用于不稳定观测的程序必须在存储和计算时间方面具有低复杂性,以便参加这些环境中传感器节点的有限处理和存储能力。在这项工作中,我们基于三个统计预测模型 - ARIMA(自动回归集成移动平均),GAM(广义添加剂模型)和黄土(本地回归)分析了三个二进制分类器 - 对于具有低内存消耗和计算时间的异常检测费率。结果,我们提供1)最佳分类器和设置,以检测基于Arima Model的异常值,以及2)两个真实世界分类数据集作为未来研究的地面真理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号