首页> 外文OA文献 >A robust error estimator and a residual-free error indicator for reduced basis methods
【2h】

A robust error estimator and a residual-free error indicator for reduced basis methods

机译:强大的错误估算器和用于减少基础方法的残差错误指示符

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Reduced Basis Method (RBM) is a rigorous model reduction approach forsolving parametrized partial differential equations. It identifies alow-dimensional subspace for approximation of the parametric solution manifoldthat is embedded in high-dimensional space. A reduced order model issubsequently constructed in this subspace. RBM relies on residual-based errorindicators or {em a posteriori} error bounds to guide construction of thereduced solution subspace, to serve as a stopping criteria, and to certify theresulting surrogate solutions. Unfortunately, it is well-known that thestandard algorithm for residual norm computation suffers from prematurestagnation at the level of the square root of machine precision. In this paper, we develop two alternatives to the standard offline phase ofreduced basis algorithms. First, we design a robust strategy for computation ofresidual error indicators that allows RBM algorithms to enrich the solutionsubspace with accuracy beyond root machine precision. Secondly, we propose anew error indicator based on the Lebesgue function in interpolation theory.This error indicator does not require computation of residual norms, andinstead only requires the ability to compute the RBM solution. Thisresidual-free indicator is rigorous in that it bounds the error committed bythe RBM approximation, but up to an uncomputable multiplicative constant.Because of this, the residual-free indicator is effective in choosing snapshotsduring the offline RBM phase, but cannot currently be used to certify errorthat the approximation commits. However, it circumvents the need for extit{aposteriori} analysis of numerical methods, and therefore can be effective onproblems where such a rigorous estimate is hard to derive.
机译:所述规约基中的方法(RBM)是一个严格模型还原方法forsolving参数化偏微分方程。它确定alow维子空间的参数溶液manifoldthat嵌入在高维空间中的逼近。降阶模型在该子空间issubsequently构成。 RBM依赖于基于剩余errorindicators或{ EM后验}误差界限,引导减薪溶液子空间的结构,以用作停止标准,并证明theresulting替代的解决方案。不幸的是,公知的是thestandard算法用于从prematurestagnation在机器精度的平方根的水平残余范数计算受损。在本文中,我们开发了两个备选方案,以标准的离线阶段ofreduced基础算法。首先,我们设计了计算ofresidual误差指标稳健的策略,允许RBM算法与超越根机精度准确丰富solutionsubspace。其次,我们提出了一种基于插值theory.This错误指示勒贝格功能重新错误指示灯不需要的残留规范计算,andinstead只需要计算RBM解决方案的能力。免费Thisresidual-指标是严格的,因为它界定错误犯bythe RBM近似,但到了这样的一个不可计算乘constant.Because,无残留的指标是有效的选择snapshotsduring离线RBM阶段,但目前还不能用于的Certify errorthat近似的提交。然而,为规避的数值方法 textit {}后验分析的需求,并因此可有效onproblems其中这样的严格估计难以以导出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号