首页> 外文OA文献 >Leveraging Fog Computing for Scalable IoT Datacenter Using Spine-Leaf Network Topology
【2h】

Leveraging Fog Computing for Scalable IoT Datacenter Using Spine-Leaf Network Topology

机译:利用雾化计算使用脊柱叶网拓扑的可扩展物联网数据中心

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the Internet of Everything (IoE) paradigm that gathers almost every object online, huge traffic workload, bandwidth, security, and latency issues remain a concern for IoT users in today’s world. Besides, the scalability requirements found in the current IoT data processing (in the cloud) can hardly be used for applications such as assisted living systems, Big Data analytic solutions, and smart embedded applications. This paper proposes an extended cloud IoT model that optimizes bandwidth while allowing edge devices (Internet-connected objects/devices) to smartly process data without relying on a cloud network. Its integration with a massively scaled spine-leaf (SL) network topology is highlighted. This is contrasted with a legacy multitier layered architecture housing network services and routing policies. The perspective offered in this paper explains how low-latency and bandwidth intensive applications can transfer data to the cloud (and then back to the edge application) without impacting QoS performance. Consequently, a spine-leaf Fog computing network (SL-FCN) is presented for reducing latency and network congestion issues in a highly distributed and multilayer virtualized IoT datacenter environment. This approach is cost-effective as it maximizes bandwidth while maintaining redundancy and resiliency against failures in mission critical applications.
机译:随着所有的互联网(IOE)范式,几乎收集在线的每个对象,巨大的交通工作量,带宽,安全性和延迟问题仍然是当今世界中的IOT用户的担忧。此外,目前的IOT数据处理(在云中)中发现的可扩展性要求几乎可以用于辅助生活系统,大数据分析解决方案和智能嵌入式应用等应用。本文提出了一个扩展的云IOT模型,可以优化带宽,同时允许边缘设备(Internet连接的对象/设备)巧妙地处理数据而不依赖于云网络。它与大规模缩放的脊柱叶(SL)网络拓扑集成了突出显示。这与传统多层分层体系结构外壳网络服务和路由策略形成鲜明对比。本文提供的透视图解释了低延迟和带宽密集型应用程序如何将数据传输到云(然后返回EDGE应用程序)而不会影响QoS性能。因此,提出了一种脊柱叶雾计算网络(SL-FCN)以减少高度分布式和多层虚拟化物联网数据中心环境中的延迟和网络拥塞问题。这种方法具有成本效益,因为它最大限度地提高了带宽,同时保持冗余和弹性对任务关键应用中的失败。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号