首页> 外文OA文献 >Differential Evolution Algorithm Aided Turbo Channel Estimation and Multi-User Detection for G.Fast Systems in the Presence of FEXT
【2h】

Differential Evolution Algorithm Aided Turbo Channel Estimation and Multi-User Detection for G.Fast Systems in the Presence of FEXT

机译:差分演进算法辅助涡轮通道估计和G.fast系统在FEXT存在中的多用户检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ever-increasing demand for broadband Internet access has motivated the further development of the digital subscriber line to the G.fast standard in order to expand its operational band from 106 to 212 MHz. Conventional far-end crosstalk (FEXT)-based cancellers falter in the upstream transmission of this emerging G.fast system. In this paper, we propose a novel differential evolution algorithm (DEA)aided turbo channel estimation (CE) and a multi-user detection (MUD) scheme for the G.fast upstream, including the frequency band up to 212 MHz, which is capable of approaching the optimal Cramer-Rao lower bound of the channel estimate, whilst approaching the optimal maximum likelihood MUD's performance associated with perfect channel state information and, yet, only imposing about 5% of its computational complexity. Explicitly, the turbo concept is exploited by iteratively exchanging information between the continuous value-based DEA-assisted channel estimator and the discrete value-based DEA MUD. Our extensive simulations show that 18-dB normalized mean square error gain is attained by the channel estimator and 10-dB signal-to-noise ratio gain can be achieved by the MUD upon exploiting this iteration gain. We also quantify the influence of the CE error, the copper length, and the impulse noise. This paper demonstrates that the proposed DEA-aided turbo CE and MUD scheme is capable of offering near-capacity performance at an affordable complexity for the emerging G.fast systems.
机译:不断增加对宽带互联网接入的需求,这是对G.fast标准的数字用户线的进一步发展,以便将其运行带从106到212 MHz扩展。传统的远端串扰(FEXT)的消除器在这个新兴G.Fast系统的上游传输中缩短了困境。在本文中,我们提出了一种新颖的差分演进算法(DEA)辅助氧化算法(DEA)辅助涡轮通道估计(CE)以及用于G.Fast上游的多用户检测(MUD)方案,包括高达212 MHz的频带,它能够接近频道估计的最佳克拉姆 - 饶乐的界限,同时接近与完美信道状态信息相关的最佳最大似然泥的性能,但是,仅施加约5%的计算复杂度。明确地,通过迭代地交换基于连续值的DEA辅助信道估计器和基于离散值的DEA泥的信息来利用Turbo概念。我们广泛的模拟表明,通过信道估计器实现了18dB归一化均线误差增益,并且在利用这种迭代增益时可以通过泥浆实现10-DB信噪比增益。我们还量化了CE误差,铜长度和脉冲噪声的影响。本文展示了所提出的DEA辅助涡轮CE和泥浆方案能够以高效的复杂性为新兴G.Fast系统提供接近容量的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号