首页> 外文OA文献 >Patch Matching and Dense CRF-Based Co-Refinement for Building Change Detection from Bi-Temporal Aerial Images
【2h】

Patch Matching and Dense CRF-Based Co-Refinement for Building Change Detection from Bi-Temporal Aerial Images

机译:基于补丁匹配和基于CRF的合作精制,用于从Bi-Temporal航空图像构建变化检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The identification and monitoring of buildings from remotely sensed imagery are of considerable value for urbanization monitoring. Two outstanding issues in the detection of changes in buildings with composite structures and relief displacements are heterogeneous appearances and positional inconsistencies. In this paper, a novel patch-based matching approach is developed using densely connected conditional random field (CRF) optimization to detect building changes from bi-temporal aerial images. First, the bi-temporal aerial images are combined to obtain change information using an object-oriented technique, and then semantic segmentation based on a deep convolutional neural network is used to extract building areas. With the change information and extracted buildings, a graph-cuts-based segmentation algorithm is applied to generate the bi-temporal changed building proposals. Next, in the bi-temporal changed building proposals, corner and edge information are integrated for feature detection through a phase congruency (PC) model, and the structural feature descriptor, called the histogram of orientated PC, is used to perform patch-based roof matching. We determined the final change in buildings by gathering matched roof and bi-temporal changed building proposals using co-refinement based on CRF, which were further classified as “newly built,„ “demolished„, or “changed„. Experiments were conducted with two typical datasets covering complex urban scenes with diverse building types. The results confirm the effectiveness and generality of the proposed algorithm, with more than 85% and 90% in overall accuracy and completeness, respectively.
机译:从远程感测图像的识别和监测建筑物对城市化监测具有相当大的价值。在综合结构和浮雕流离失所检测建筑物的变化中的两个出色问题是异质外观和位置不一致。本文使用密集连接的条件随机场(CRF)优化开发了一种基于补丁的匹配方法,以检测来自双时颞空中图像的建筑物变化。首先,将双时颞空中图像组合以获得使用面向对象的技术获得改变信息,然后基于深度卷积神经网络的语义分割用于提取建筑物区域。利用更改信息和提取的建筑物,应用了基于图形的分割算法来生成双时态改变的建筑提案。接下来,在双时效改变的建议,通过相位通过(PC)模型集成了角和边缘信息,用于通过相位通过(PC)模型来集成特征检测,并且使用定向PC的直方图的结构特征描述符用于执行基于补丁的屋顶匹配。我们确定了基于CRF的共同细化的匹配的屋顶和双时颞改变建筑提案,进一步归类为“新建”,“拆除”或“改变”的屋顶和双颞改变建筑提案。用两个典型的数据集进行实验,涵盖复杂的城市场景,具有不同的建筑类型。结果证实了所提出的算法的有效性和一般性,分别具有超过85%和90%的整体准确性和完整性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号