首页> 外文OA文献 >Word Vector Models Approach to Text Regression of Financial Risk Prediction
【2h】

Word Vector Models Approach to Text Regression of Financial Risk Prediction

机译:文字传染媒介模型对财务风险预测的文本回归

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Linking textual information in finance reports to the stock return volatility provides a perspective on exploring useful insights for risk management. We introduce different kinds of word vector representations in the modeling of textual information: bag-of-words, pre-trained word embeddings, and domain-specific word embeddings. We apply linear and non-linear methods to establish a text regression model for volatility prediction. A large number of collected annually-published financial reports in the period from 1996 to 2013 is used in the experiments. We demonstrate that the domain-specific word vector learned from data not only captures lexical semantics, but also has better performance than the pre-trained word embeddings and traditional bag-of-words model. Our approach significantly outperforms with smaller prediction error in the regression task and obtains a 4%−10% improvement in the ranking task compared to state-of-the-art methods. These improvements suggest that the textual information may provide measurable effects on long-term volatility forecasting. In addition, we also find that the variations and regulatory changes in reports make older reports less relevant for volatility prediction. Our approach opens a new method of research into information economics and can be applied to a wide range of financial-related applications.
机译:将财务报告中的文本信息与股票回报持有联系在股票回报中提供了一种探索风险管理有用见解的视角。我们在文本信息的建模中引入了不同种类的单词矢量表示:文字袋,预先训练的单词嵌入品,以及特定于域的Word Embeddings。我们应用线性和非线性方法来建立挥发性预测的文本回归模型。在1996年至2013年期间,在实验中使用了大量收集的每年发表的财务报告。我们证明,从数据中学习的域特定的单词载体不仅捕获了词汇语义,而且比预先训练的单词嵌入和传统的单词模型更好的性能。我们的方法在回归任务中具有较小的预测误差明显优于较小的预测误差,并与最先进的方法相比,在排名任务中获得4%-10%的改进。这些改进表明,文本信息可以对长期波动性预测提供可测量的影响。此外,我们还发现报告中的变化和监管变化使较旧的报告对波动性预测的相关性更少。我们的方法开启了一种新的研究方法,可以应用于广泛的与财务相关的应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号