首页> 外文OA文献 >Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel
【2h】

Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel

机译:延伸变量广义LangeVin方程与正掌上的透镜代表内存内核的数值集成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Generalized Langevin dynamics (GLD) arise in the modeling of a number ofsystems, ranging from structured fluids that exhibit a viscoelastic mechanicalresponse, to biological systems, and other media that exhibit anomalousdiffusive phenomena. Molecular dynamics (MD) simulations that include GLD inconjunction with external and/or pairwise forces require the development ofnumerical integrators that are efficient, stable, and have known convergenceproperties. In this article, we derive a family of extended variableintegrators for the Generalized Langevin equation (GLE) with a positive Pronyseries memory kernel. Using stability and error analysis, we identify asuperlative choice of parameters and implement the corresponding numericalalgorithm in the LAMMPS MD software package. Salient features of the algorithminclude exact conservation of the first and second moments of the equilibriumvelocity distribution in some important cases, stable behavior in the limit ofconventional Langevin dynamics, and the use of a convolution-free formalismthat obviates the need for explicit storage of the time history of particlevelocities. Capability is demonstrated with respect to accuracy in numerouscanonical examples, stability in certain limits, and an exemplary applicationin which the effect of a harmonic confining potential is mapped onto a memorykernel.
机译:广义Langevin Dynamics(GLD)出现在型系统的建模中,从表现出粘弹性的液体的结构化流体,以及展示异常屈光度现象的生物系统和其他媒体。包含外部和/或成对力的GLD Inconterncunction的分子动力学(MD)模拟需要开发型节点,其具有高效,稳定,并且具有已知的趋同性能。在本文中,我们派生了一系列扩展的Langevin等式(GLE)的扩展可变介体(GLE),具有积极的Pryseries Memory Kernel。使用稳定性和误差分析,我们识别参数的变成选择并在LAMMPS MD软件包中实现相应的NumeralicGorithomGorithm。算法的突出特征在一些重要情况下,算法的算法的精确节约在一个重要的情况下,在一个重要的情况下稳定的行为,以及使用卷积的形式,使用卷积的形式,消除了对时间历史的明确储存的必要性粒子素。关于无数碳实例的精度来证明能力,在某些限制中的稳定性以及谐波限制潜力的效果映射到MemoryKernel的示例性应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号