首页> 外文OA文献 >Compressive Sensing Based Radio Tomographic Imaging with Spatial Diversity
【2h】

Compressive Sensing Based Radio Tomographic Imaging with Spatial Diversity

机译:基于压缩的基于射频分流的射频分流成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Radio tomographic imaging (RTI) has emerged as a promising device-free localization technology for locating the targets with no devices attached. RTI deduces the location information from the reconstructed attenuation image characterizing target-induced spatial loss of radio frequency measurements in the sensing area. In cluttered indoor environments, RF measurements of wireless links are corrupted by multipath effects and thus less robust to achieve a high localization accuracy for RTI. This paper proposes to improve the quality of measurements by using spatial diversity. The key insight is that, with multiple antennae equipped, due to small-scale multipath fading, RF measurement variation of each antenna pair behaves differently. Therefore, spatial diversity can provide more reliable and strong measurements in terms of link quality. Moreover, to estimate the location from the image more precisely and make the image more identifiable, we propose using a new reconstruction regularization linearly combining the sparsity and correlation inherent in the image. The proposed reconstruction method can remarkably reduce the image noise and enhance the imaging accuracy especially in the case of a few available measurements. Indoor experimental results demonstrate that compared to existing RTI improvement methods, our RTI solution can reduce the root-mean-square localization error at least 47% while also improving the imaging performance.
机译:无线电断层成像(RTI)已成为一种有前途的无需设备的定位技术,用于定位无需设备的设备。 RTI从特征在传感区域中的目标感应射频测量的目标感应空间丢失的重构衰减图像中推断出位置信息。在杂乱的室内环境中,无线链路的RF测量由多径效应损坏,从而稳定地实现RTI的高分辨率。本文通过使用空间多样性提出了提高测量质量。关键洞察力是,通过配备多个天线的,由于小规模的多径衰落,每个天线对的RF测量变化的行为不同。因此,空间多样性可以在链路质量方面提供更可靠和强烈的测量。此外,为了更精确地从图像中估计位置并使图像更加识别,我们建议使用新的重建正则化线性地组合图像中固有的稀疏性和相关性。所提出的重建方法可以显着降低图像噪声并提高成像精度,尤其是在一些可用测量的情况下。室内实验结果表明,与现有的RTI改进方法相比,我们的RTI解决方案可以减少根均方定位误差至少47%,同时还提高了成像性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号