首页> 外文OA文献 >Deep Blind Image Inpainting
【2h】

Deep Blind Image Inpainting

机译:深盲图像染色

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Image inpainting is a challenging problem as it needs to fill the informationof the corrupted regions. Most of the existing inpainting algorithms assumethat the positions of the corrupted regions are known. Different from theexisting methods that usually make some assumptions on the corrupted regions,we present an efficient blind image inpainting algorithm to directly restore aclear image from a corrupted input. Our algorithm is motivated by the residuallearning algorithm which aims to learn the missing infor- mation in corruptedregions. However, directly using exist- ing residual learning algorithms inimage restoration does not well solve this problem as little information isavailable in the corrupted regions. To solve this problem, we introduce anencoder and decoder architecture to capture more useful information and developa robust loss function to deal with outliers. Our algorithm can predict themissing information in the corrupted regions, thus facilitating the clear imagerestoration. Both qualitative and quantitative experimental demonstrate thatour algorithm can deal with the corrupted regions of arbitrary shapes andperforms favorably against state-of-the-art methods.
机译:图像染色是一个具有挑战性的问题,因为它需要填补损坏的地区的信息。大多数现有的批量算法假设损坏区域的位置是已知的。与通常对损坏区域的某些假设的先例方法不同,我们呈现了一种有效的盲图像修复算法,可直接从损坏的输入恢复ACLEAR图像。我们的算法受到Residuallearning算法的动机,旨在学习损坏的遗失信息。但是,直接使用存在的残差学习算法InImage Restoration在损坏的区域中可用的很少信息,并不妥善解决这个问题。为了解决这个问题,我们介绍了anencoder和解码器架构,以捕获更有用的信息和开发强大的损失函数来处理异常值。我们的算法可以预测损坏的区域中的经济信息,从而促进了透明的成像。定性和定量的实验证明大家算法可以处理任意形状的损坏区域,而现有的方法是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号