首页> 外文OA文献 >Detecting Android malicious apps and categorizing benign apps with ensemble of classifiers
【2h】

Detecting Android malicious apps and categorizing benign apps with ensemble of classifiers

机译:使用分类器的集合检测Android恶意应用程序和分类良性应用程序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Android platform has dominated the markets of smart mobile devices in recent years. The number of Android applications (apps) has seen a massive surge. Unsurprisingly, Android platform has also become the primary target of attackers. The management of the explosively expansive app markets has thus become an important issue. On the one hand, it requires effectively detecting malicious applications (malapps) in order to keep the malapps out of the app market. On the other hand, it needs to automatically categorize a big number of benign apps so as to ease the management, such as correcting an app’s category falsely designated by the app developer. In this work, we propose a framework to effectively and efficiently manage a big app market in terms of detecting malapps and categorizing benign apps. We extract 11 types of static features from each app to characterize the behaviors of the app, and employ the ensemble of multiple classifiers, namely, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Naive Bayes (NB), Classification and Regression Tree (CART) and Random Forest (RF), to detect malapps and to categorize benign apps. An alarm will be triggered if an app is identified as malicious. Otherwise, the benign app will be identified as a specific category. We evaluate the framework on a large app set consisting of 107,327 benign apps as well as 8,701 malapps. The experimental results show that our method achieves the accuracy of 99.39% in the detection of malapps and achieves the best accuracy of 82.93% in the categorization of benign apps.
机译:Android平台近年来占据了智能移动设备的市场。 Android应用程序(APPS)的数量已经看到了巨大的浪涌。不出所料,Android平台也成为攻击者的主要目标。爆炸性广泛的App Markets的管理成为一个重要问题。一方面,它需要有效地检测恶意应用程序(MARAPPS),以便将MALAPPS从应用市场中脱离。另一方面,它需要自动对大量良性应用程序进行分类,以便缓解管理,例如纠正应用程序开发人员错误指定的应用程序类别。在这项工作中,我们提出了一个框架,以便在检测MALAPPS和分类良性应用程序方面有效和有效地管理大型应用市场。我们从每个应用中提取11种类型的静态功能,以表征应用程序的行为,并采用多个分类器的集合,即支持向量机(SVM),K最近邻(knn),幼稚贝叶斯(NB),分类和回归树(推车)和随机森林(RF),检测MALAPP和分类良性应用程序。如果应用程序被标识为恶意,将触发警报。否则,良性应用将被标识为特定类别。我们评估由107,327个良性应用以及8,701 Malapps组成的大型应用程序集的框架。实验结果表明,我们的方法在良性应用的分类中实现了69.39%的准确度99.39%,达到了良性应用分类的最佳准确性为82.93%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号