首页> 外文OA文献 >Strange non-chaotic attractors in quasi-periodically forced circle maps: Diophantine forcing
【2h】

Strange non-chaotic attractors in quasi-periodically forced circle maps: Diophantine forcing

机译:准周期性强制圆形地图中奇怪的非混沌吸引子:衍生植物强迫

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study parameter families of quasiperiodically forced (qpf) circle mapswith Diophantine frequency. Under certain C1-open conditions concerning theirgeometry, we prove that these families exhibit nonuniformly hyperbolicbehaviour, often referred to as the existence of strange nonchaotic attractors,on parameter sets of positive measure. This provides a nonlinear version ofresults by Young on quasiperiodic SL (2;R)-cocycles and complements previousresults in this direction which hold for sets of frequencies of positivemeasure, but did not allow for an explicit characterisation of thesefrequencies. As an application, we study a qpf version of the Arnold circle mapand show that the Arnold tongue corresponding to rotation number 1/2 collapseson an open set of parameters. The proof requires to perform a parameterexclusion with respect to some twist parameter and is based on the multiscaleanalysis of the dynamics on certain dynamically defined critical sets. Acrucial ingredient is to obtain good control on the parameter-dependence of thecritical sets. Apart from the presented results, we believe that this step willbe important for obtaining further information on the behaviour of parameterfamilies like the qpf Arnold circle map.
机译:我们研究了具有丢丢番频率的拟周期强迫(qpf)圆图的参数族。在某些关于其几何形状的C1开放条件下,我们证明了这些族在正度量参数集上表现出非均匀的双曲线行为,通常被称为奇异的非混沌吸引子的存在。这提供了Young关于拟周期SL(2; R)-cocycles的非线性结果,并补充了该方向上先前的结果,该结果适用于一组肯定的测量频率,但不允许对这些频率进行明确的表征。作为应用,我们研究了qn版本的Arnold圆图,并证明与旋转数1/2塌陷相对应的Arnold舌是一组开放参数。证明需要针对某些扭曲参数执行参数排除,并且基于对某些动态定义的关键集合上的动力学进行多尺度分析。关键要素是要对关键集的参数依赖性进行良好的控制。除了给出的结果外,我们认为该步骤对于获得有关qpf Arnold圆图等参数族的行为的进一步信息很重要。

著录项

  • 作者

    T. JÄGER;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"english","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号