首页> 外文OA文献 >Identifying Influential Variables in Complex System: Network Topology Versus Principal Component Analysis
【2h】

Identifying Influential Variables in Complex System: Network Topology Versus Principal Component Analysis

机译:识别复杂系统中的影响变量:网络拓扑与主成分分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High dimensional covariance structure can be considered as a complex system that relates each variable to the others in terms of variability. In complex system, identifying influential variables is a very important part of reliability analysis, which has been a key issue in analysing the structural organization of a system. To analyse such complex system, network topology and principal component analysis are constructed to simplify the system. Network topology can be used to simplify the information about the system and centrality measure will be used to interpret the network. In the other hand, the principal component analysis can be used to eliminate the variables that contribute little extra information. An example will be discussed to illustrate the advantage and disadvantage of network topology and principal component analysis and a recommendation will be presented.
机译:高维协方差结构可以看作是一个复杂的系统,该系统将每个变量与其他变量相关联。在复杂的系统中,识别影响变量是可靠性分析的重要部分,这已成为分析系统结构组织的关键问题。为了分析这种复杂的系统,构建了网络拓扑和主成分分析以简化系统。网络拓扑可用于简化有关系统的信息,而集中度度量将用于解释网络。另一方面,主成分分析可以用来消除几乎没有额外信息的变量。将讨论一个示例,以说明网络拓扑和主成分分析的优缺点,并提出建议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号