首页> 外文OA文献 >Tailored Air-Handling System Development for Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
【2h】

Tailored Air-Handling System Development for Gasoline Compression Ignition in a Heavy-Duty Diesel Engine

机译:重型柴油发动机中汽油压缩点火量身定制的空气处理系统开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The simultaneous application of new low-NOx emissions standards and greenhouse gas (GHG) rules has placed great pressure on the commercial vehicle industry and has driven demand for innovative solutions. One potential solution, gasoline compression ignition (GCI), utilizes gasoline’s lower reactivity to promote partially premixed combustion and extract efficiency while reducing the PM-NOx trade-off curve. Gasoline’s volatility allows for the use of higher levels of exhaust gas recirculation (EGR), a key enabler of GCI combustion. In order to deliver higher levels of EGR while maintaining sufficient boost pressure, a tailored and efficient air-handling system is critical. This work presents the analysis-led development of a low-NOx GCI air-handling system including both turbocharger matching and EGR configuration for a prototype heavy-duty GCI engine based on a model year 2013 Cummins ISX diesel engine using low octane gasoline (RON80). In the analysis-driven development process, a 1D engine system-level analysis was closely coupled with closed-cycle 3D CFD GCI combustion development. Three different boost systems were investigated using a validated 1D engine model: 1) the production turbocharger; 2) an off-the-shelf single-stage waste-gate turbocharger; 3) a prototype single-stage variable geometry turbocharger. For each boost system, three EGR configurations were evaluated: 1) a high-pressure EGR route; 2) a low-pressure EGR route; 3) a dual-loop EGR route. The air-handling system performance was first investigated over five steady-state engine operating conditions extracted from the ramped modal cycle supplemental emissions test. Then, through cosimulation using a Simulink-based engine controls model, the best performing candidates under transient operation through the Heavy-Duty Federal Test Procedure certification cycle were identified. The production turbocharger, designed for 4–6 g/kWh engine-out NOx, suffered from low combined turbocharger efficiency under the low-NOx GCI thermal boundary conditions. The prototype 1-Stage variable geometry turbocharger, when used with a high-pressure EGR configuration, demonstrated higher combined efficiencies, while the waste-gate turbocharger showed the best results when used with a dual-loop EGR system. All low-pressure only EGR configurations were found to incur additional pumping penalties due to the need for a back pressure valve to drive sufficient EGR levels. In the transient test cycle analysis, the single-stage high-pressure EGR system was capable of delivering the target boost and EGR, while the off-the-shelf waste-gate turbocharger, with its higher mass inertia, showed slower turbine response and a resulting lag in boost response. Unsurprisingly, the dual-loop EGR system also suffered from delays in EGR delivery during engine acceleration. In summary, the prototype single-stage variable geometry turbocharger with a high-pressure EGR system produced the best performance over both the steady-state and transient engine cycles and was identified as the best candidate for the prototype low-NOx heavy-duty GCI engine.
机译:同时应用新的低NOX排放标准和温室气体(GHG)规则对商业车辆行业的压力造成了很大的压力,并为创新解决方案带来了需求。一种潜在的解决方案,汽油压缩点火(GCI)利用汽油的较低反应性,促进部分预混的燃烧和提取效率,同时减少PM-NOx折衷曲线。汽油的波动率允许使用更高水平的废气再循环(EGR),GCI燃烧的关键推动器。为了提供更高水平的EGR,同时保持足够的增压压力,量身定制和有效的空气处理系统至关重要。这项工作介绍了低Nox GCI空气处理系统的分析 - LED开发,包括基于使用低辛烷值汽油(RON80)的模型年度2013年康明斯ISX柴油机的原型重型GCI引擎涡轮增压器匹配和EGR配置。在分析驱动的开发过程中,1D发动机系统级分析与闭环3D CFD GCI燃烧开发密切联系。使用经过验证的1D发动机型号调查了三种不同的升压系统:1)生产涡轮增压器; 2)现成的单级垃圾涡轮增压器; 3)原型单级变量几何涡轮增压器。对于每个升压系统,评估三个EGR配置:1)高压EGR路线; 2)低压EGR路线; 3)双循环EGR路线。首先在从斜坡模态循环补充排放测试中提取的五个稳态发动机操作条件上进行了空气处理系统性能。然后,通过使用基于Simulink的发动机控制模型的化妆品,识别通过重型联邦测试过程认证周期的瞬态操作下的最佳性能候选。生产涡轮增压器,专为4-6克/千瓦时发动机输出NOx,低NOx GCI热边界条件下的涡轮增压器效率低。当与高压EGR配置一起使用时,原型1级变量几何涡轮增压器显示出更高的效率,而废气涡轮增压器与双环EGR系统一起使用时效果最佳。由于需要背压阀以驱动足够的EGR水平,因此发现所有低压的仅限EGR配置都发现额外的泵送损失。在瞬态测试循环分析中,单级高压EGR系统能够提供目标升压和EGR,而现成的废物槽涡轮增压器具有较高的质量惯性,显示出较慢的涡轮响应和A导致升压响应的滞后。不出所料,双环EGR系统也遭受发动机加速期间EGR递送的延迟。总之,具有高压EGR系统的原型单级可变几何涡轮增压器在稳态和瞬态发动机周期上产生了最佳性能,并被确定为原型低NOx重型GCI发动机的最佳候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号