首页> 外文OA文献 >Robust image watermarking techniques using image features
【2h】

Robust image watermarking techniques using image features

机译:使用图像特征的稳健图像水印技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis addresses the issue of image watermarking robustness against attacks and especially geometrical attacks. The objectives of this research were, improve robustness watermarking technique based on local image features, and propose robust zero watermarking technique according to the global features of image, To obtain the local feature of image, the feature points extractor is very important. The improved robustness watermarking scheme adopted better feature points extractions named Brief and Efficient Scale Invariant Feature Transform, also adopted another feature points extractions named grouping Harris corner, so they can choose more robust feature points, then increase the robustness of watermark. This scheme used two watermarking techniques, namely, local circular region and block discrete cosine transform, to embed the watermark into two types of regions and extract it. To embed in local circular region, Brief and Efficient Scale Invariant Feature Transform extracts feature points, and then Local Circular Regions for embedding are found, finally, the watermark is embedded into Local Circular Regions by using Histogram. To embed into block discrete cosine transform, grouping Harris corner extracts feature points, and then the image is divided into 80 × 80 non-overlapping block to find candidate blocks, then each candidate block is divided into 8×8 non-overlapping sub-blocks and embeds the watermark in the DC components of each sub-block using its HVS-based embedding strength. For extracting watermark from Local Circular Regions, firstly, robust BE-SIFT feature points is extracted, then, Local Circular Regions are found, finally, the local histogram is computed to extract the watermark. For extracting watermark from Block DCT, first, grouping robust Harris corner feature points is extracted. Second, Delaunay tessellation and triangle matching are applied to restore the probe image. Third, the probe image is divided into 80×80 non-overlapping blocks. Fourth, each block is divided into 8×8 non-overlapping sub-blocks. Fifth, any sub-block is transformed into DCT sub-block. Sixth, the watermark is extracted from DC values. The experimental results showed that the improved scheme is robust against a wide variety of attacks. In particular, it is more robust against geometric attacks. The proposed method has 100% good performance for resisting attacks on Lena and Pepper images, and at least 84% good performance on Barbara and Plane images compared with Deng’s method, and it has 100% good performance compared with other methods. In addition, robust zero watermarking scheme based on global feature of image using complex Zernike moments is proposed, the contribution of this method is adopting complex Zernike moments, which can provide better robustness against geometric attacks and provide more information about image and more space for embedding and zero watermarking. Before calculating complex Zernike moments, standard translation and scaling of the tested image is performed, after getting the binarization of the argument value, the feature image is constructed and XOR operation with logo image is executed to generate verification image. Experimental results demonstrated that the proposed scheme has strong robustness to various attacks especially geometric attacks. The proposed scheme has at least 70% good performance of resisting attacks on tested images compared with the other methods.
机译:本文解决了图像水印对攻击尤其是几何攻击的鲁棒性问题。本研究的目的是基于局部图像特征改进鲁棒性水印技术,并根据图像的全局特征提出鲁棒的零水印技术,特征点提取器对于获得图像的局部特征非常重要。改进的鲁棒性水印方案采用了更好的特征点提取,称为Brief和Efficient Scale Invariant Feature Transform,还采用了另一种特征点提取,即对分组的Harris角进行分组,这样他们可以选择更鲁棒的特征点,从而提高水印的鲁棒性。该方案使用局部圆形区域和块离散余弦变换这两种水印技术将水印嵌入两种类型的区域中并进行提取。为了嵌入到局部圆形区域中,利用简短有效的尺度不变特征变换提取特征点,然后找到要嵌入的局部圆形区域,最后,利用直方图将水印嵌入局部圆形区域中。为了嵌入到块离散余弦变换中,对哈里斯角进行分组以提取特征点,然后将图像划分为80×80非重叠块以找到候选块,然后将每个候选块划分为8×8非重叠子块并使用基于HVS的嵌入强度将水印嵌入每个子块的DC组件中。为了从局部圆形区域中提取水印,首先,提取鲁棒的BE-SIFT特征点,然后找到局部圆形区域,最后,计算局部直方图以提取水印。为了从块DCT中提取水印,首先,提取鲁棒的哈里斯角特征点的分组。其次,应用Delaunay细分和三角形匹配来还原探针图像。第三,探测图像被分成80×80个非重叠块。第四,每个块被划分为8×8个非重叠子块。第五,任何子块被转换成DCT子块。第六,从DC值中提取水印。实验结果表明,该改进方案对多种攻击具有鲁棒性。特别是,它在抵抗几何攻击方面更强大。与Deng的方法相比,该方法在抵抗Lena和Pepper图像的攻击方面具有100%的良好性能,在Barbara和Plane图像上具有至少84%的良好性能,并且与其他方法相比,具有100%的良好性能。另外,提出了一种基于复杂的Zernike矩的基于图像全局特征的鲁棒零水印方案,该方法的贡献在于采用了复杂的Zernike矩,可以提供更好的鲁棒性来抵抗几何攻击,并提供更多的图像信息和更多的嵌入空间。和零水印。在计算复杂的Zernike矩之前,先对测试图像进​​行标准平移和缩放,然后对参数值进行二值化处理,然后构建特征图像,并对徽标图像执行XOR操作以生成验证图像。实验结果表明,该方案对各种攻击,特别是几何攻击具有很强的鲁棒性。与其他方法相比,该方案具有至少70%的抗测试图像攻击性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号