首页> 外文OA文献 >On H-Supermagic Labelings of m-Shadow of Paths and Cycles
【2h】

On H-Supermagic Labelings of m-Shadow of Paths and Cycles

机译:关于路径和循环M阴影的H-超级贴标

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A simple graph G=(V,E) is said to be an H-covering if every edge of G belongs to at least one subgraph isomorphic to H. A bijection f:V∪E→{1,2,3,…,V+E} is an (a,d)-H-antimagic total labeling of G if, for all subgraphs H′ isomorphic to H, the sum of labels of all vertices and edges in H′ form an arithmetic sequence {a,a+d,…,(k-1)d} where a>0, d≥0 are two fixed integers and k is the number of all subgraphs of G isomorphic to H. The labeling f is called super if the smallest possible labels appear on the vertices. A graph that admits (super) (a,d)-H-antimagic total labeling is called (super) (a,d)-H-antimagic. For a special d=0, the (super) (a,0)-H-antimagic total labeling is called H-(super)magic labeling. A graph that admits such a labeling is called H-(super)magic. The m-shadow of graph G, Dm(G), is a graph obtained by taking m copies of G, namely, G1,G2,…,Gm, and then joining every vertex u in Gi, i∈{1,2,…,m-1}, to the neighbors of the corresponding vertex v in Gi+1. In this paper we studied the H-supermagic labelings of Dm(G) where G are paths and cycles.
机译:如果G的每个边缘属于H的每个边缘,则据说简单的图G =(v,e)是一个H覆盖物。一对H的一个副出台。{1,2,3,......, v + e}是G如果对于所有子图H'同态到H的(a,d)-h-抗螳螂总标记,则为h的标记和h'中的所有顶点和边缘的标签之和形成算术序列{a,a + d,...,(k-1)d}其中a> 0,d≥0是两个固定的整数,k是g同构到h的所有子图的数量。标签f如果出现最小可能的标签,则称为超级在顶点上。承认(超级)(a,d)-h-抗螳螂的图表称为(超级)(a,d)-h-抗螳螂。对于特殊的d = 0,(超级)(a,0)-h-抗螳螂的总标签称为h-(超级)魔术标签。承认这种标签的图表称为H-(超级)魔法。图G,DM(G)的M阴影是通过拍摄G,即G1,G2,...,GM的M拷贝而获得的图表,然后在GI中的每个顶点u,I∈{1,2, ...,M-1},在GI + 1中的相应顶点V的邻居。在本文中,我们研究了DM(g)的H-超级贴标,其中G是路径和循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号