首页> 外文OA文献 >An adaptive amoeba algorithm for shortest path tree computation in dynamic graphs
【2h】

An adaptive amoeba algorithm for shortest path tree computation in dynamic graphs

机译:动态图中最短路径树计算的自适应AmoEBA算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents an adaptive amoeba algorithm to address the shortest pathtree (SPT) problem in dynamic graphs. In dynamic graphs, the edge weightupdates consists of three categories: edge weight increases, edge weightdecreases, the mixture of them. Existing work on this problem solve this issuethrough analyzing the nodes influenced by the edge weight updates and recomputethese affected vertices. However, when the network becomes big, the processwill become complex. The proposed method can overcome the disadvantages of theexisting approaches. The most important feature of this algorithm is itsadaptivity. When the edge weight changes, the proposed algorithm can recognizethe affected vertices and reconstruct them spontaneously. To evaluate theproposed adaptive amoeba algorithm, we compare it with the Label Settingalgorithm and Bellman-Ford algorithm. The comparison results demonstrate theeffectiveness of the proposed method.
机译:本文提出了一种自适应变形虫算法来解决动态图中的最短路径树(SPT)问题。在动态图中,边缘权重更新包括三类:边缘权重增加,边缘权重减少以及它们的混合。有关此问题的现有工作通过分析受边缘权重更新影响的节点并重新计算这些受影响的顶点来解决此问题。但是,当网络变大时,过程将变得复杂。所提出的方法可以克服现有方法的缺点。该算法的最重要特征是其适应性。当边缘权重发生变化时,该算法可以识别出受影响的顶点并自发重建。为了评估提出的自适应变形虫算法,我们将其与Label Settingalgorithm和Bellman-Ford算法进行了比较。比较结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号