首页> 外文OA文献 >A Measurement-Data-Driven Control Approach towards Variance Reduction of Micromachined Resonant Accelerometer under Multi Unknown Disturbances
【2h】

A Measurement-Data-Driven Control Approach towards Variance Reduction of Micromachined Resonant Accelerometer under Multi Unknown Disturbances

机译:多循环谐振加速度计方差减少的测量数据驱动控制方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper first presents an adaptive expectation-maximization (AEM) control algorithm based on a measurement-data-driven model to reduce the variance of microelectromechanical system (MEMS) accelerometer sensor under multi disturbances. Significantly different characteristics of the disturbances, consisting of drastic-magnitude, short-duration vibration in the external environment, and slowly-varying, long-duration fluctuation inside the sensor are first constructed together with the measurement model of the accelerometer. Next, through establishing a data-driven model based on a historical small measurement sample, the window length of filter of the presented algorithm is adaptively chosen to estimate the sensor state and identify these disturbances simultaneously. Simulation results of the proposed AEM algorithm based on experimental test are compared with the Kalman filter (KF), least mean square (LMS), and regular EM (REM) methods. Variances of the estimated equivalent input under static condition are 0.212 mV, 0.149 mV, 0.015 mV, and 0.004 mV by the KF, LMS, REM, and AEM, respectively. Under dynamic conditions, the corresponding variances are 35.5 mV, 2.07 mV, 2.0 mV, and 1.45 mV, respectively. The variances under static condition based on the proposed method are reduced to 1.9%, 2.8%, and 27.3%, compared with the KF, LMS, and REM methods, respectively. The corresponding variances under dynamic condition are reduced to 4.1%, 70.1%, and 72.5%, respectively. The effectiveness of the proposed method is verified to reduce the variance of the MEMS resonant accelerometer sensor.
机译:本文首先提出了一种基于测量数据驱动模型的自适应期望 - 最大化(AEM)控制算法,以降低多扰动下微机电系统(MEMS)加速度计传感器的变化。显着不同的扰动特性,包括剧烈幅度,外部环境的短持续时间振动,以及传感器内的缓慢变化的长持续时间波动,首先与加速度计的测量模型一起构造。接下来,通过建立基于历史小型测量样本的数据驱动模型,自适应地选择所提出的算法的滤波器的窗口长度以估计传感器状态并同时识别这些干扰。与Kalman滤波器(KF),最小均方(LMS)和常规EM(REM)方法进行比较了基于实验测试的提出的AEM算法的仿真结果。静态条件下的估计等效输入的差异分别为0.212mV,0.149mV,0.015 mV,分别由KF,LMS,REM和AEM分别为0.004mV。在动态条件下,相应的差异分别为35.5mV,2.07mV,2.0 mV和1.45 mV。与KF,LMS和REM方法相比,基于所提出的方法的静态条件下的静态条件下降至1.9%,2.8%和27.3%。动态条件下的相应差异分别降至4.1%,70.1%和72.5%。验证了所提出的方法的有效性以降低MEMS谐振加速度计传感器的方差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号