首页> 外文OA文献 >Integrated Fault Detection Framework for Classifying Rotating Machine Faults Using Frequency Domain Data Fusion and Artificial Neural Networks
【2h】

Integrated Fault Detection Framework for Classifying Rotating Machine Faults Using Frequency Domain Data Fusion and Artificial Neural Networks

机译:使用频域数据融合和人工神经网络对旋转机器故障进行分类的集成故障检测框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The availability of complex rotating machines is vital for the prevention of catastrophic failures in a significant number of industrial operations. Reliability engineering theories stipulate that optimising the mean-time-to-repair (MTTR) for failed machines can immensely boost availability. In practice, however, a significant amount of time is taken to accurately detect and classify rotor-related anomalies which often negate the drive to achieve a truly robust maintenance decision-making system. Earlier studies have attempted to address these limitations by classifying the poly coherent composite spectra (pCCS) features generated at different machine speeds using principal components analysis (PCA). As valuable as the observations obtained were, the PCA-based classifications applied are linear which may or may not limit their applicability to some real-life machine vibration data that are often associated with certain degrees of non-linearities due to faults. Additionally, the PCA-based faults classification approach used in earlier studies sometimes lack the capability to self-learn which implies that routine machine health classifications would be done manually. The initial parts of the current paper were presented in the form of a thorough search of the literature related to the general concept of data fusion approaches in condition monitoring (CM) of rotation machines. Based on the potentials of pCCS features, the later parts of the article are concerned with the application of the same features for the exploration of a simplified two-staged artificial neural network (ANN) classification approach that could pave the way for the automatic classification of rotating machines faults. This preliminary examination of the classification accuracies of the networks at both stages of the algorithm offered encouraging results, as well as indicates a promising potential for this enhanced approach during field-based condition monitoring of critical rotating machines.
机译:复杂旋转机器的可用性对于预防大量工业运营中的灾难性失败至关重要。可靠性工程理论规定,优化故障机器的平均维修(MTTR)可以巨大地提升可用性。然而,在实践中,需要大量的时间来准确地检测和分类与否定的转子相关的异常,这些异常否则否定驱动器以实现真正稳健的维护决策系统。早期的研究通过使用主成分分析(PCA)分类在不同机器速度下产生的聚合复合光谱(PCCS)特征来解决这些限制。与所获得的观察结果一样有价值,所应用的基于PCA的分类是线性的,其可以或可能不会限制其对某些现实机器振动数据的适用性,其通常由于故障导致的某些非线性度与某些非线性相关联。此外,早期研究中使用的基于PCA的故障分类方法有时缺乏自学的能力,这意味着手动完成常规机器健康分类。目前纸张的初始部分以彻底搜索的形式呈现与旋转机器条件监测(CM)中的数据融合方法一般概念相关的文献。基于PCCS特征的潜力,文章的后期部分涉及相同特征的应用,用于探索简化的双分阶段人工神经网络(ANN)分类方法,该方法可以为自动分类铺平旋转机器故障。这种初步检查算法的两个阶段的网络分类精度提供了令人鼓舞的结果,并表示在基于现场的临界旋转机器的现场状态监测过程中这种增强方法的有希望的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号