首页> 外文OA文献 >Joint Detection and Classification of Singing Voice Melody Using Convolutional Recurrent Neural Networks
【2h】

Joint Detection and Classification of Singing Voice Melody Using Convolutional Recurrent Neural Networks

机译:卷积复制神经网络唱歌语音旋律的联合检测与分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Singing melody extraction essentially involves two tasks: one is detecting the activity of a singing voice in polyphonic music, and the other is estimating the pitch of a singing voice in the detected voiced segments. In this paper, we present a joint detection and classification (JDC) network that conducts the singing voice detection and the pitch estimation simultaneously. The JDC network is composed of the main network that predicts the pitch contours of the singing melody and an auxiliary network that facilitates the detection of the singing voice. The main network is built with a convolutional recurrent neural network with residual connections and predicts pitch labels that cover the vocal range with a high resolution, as well as non-voice status. The auxiliary network is trained to detect the singing voice using multi-level features shared from the main network. The two optimization processes are tied with a joint melody loss function. We evaluate the proposed model on multiple melody extraction and vocal detection datasets, including cross-dataset evaluation. The experiments demonstrate how the auxiliary network and the joint melody loss function improve the melody extraction performance. Furthermore, the results show that our method outperforms state-of-the-art algorithms on the datasets.
机译:唱歌旋律提取基本上涉及两个任务:一个是检测到复音音乐中唱歌语音的活动,另一个是在检测到的浊音段中估计唱歌的音调。在本文中,我们介绍了一个联合检测和分类(JDC)网络,其同时进行唱歌语音检测和音高估计。 JDC网络由主网络组成,该主网络预测唱歌旋律的音调轮廓和辅助网络,其有助于检测唱歌的声音。主网络采用卷积复制神经网络构建,具有剩余连接,并预测高分辨率以及非语音状态覆盖声带范围的音高标签。辅助网络培训以使用来自主网络共享的多级别功能来检测歌唱语音。两种优化过程与关节旋律损失功能捆绑在一起。我们评估了多旋律提取和声音检测数据集的提出模型,包括交叉数据集评估。实验表明辅助网络和联合熔岩损失功能如何改善熔化提取性能。此外,结果表明,我们的方法优于数据集上的最先进的算法。

著录项

  • 作者

    Sangeun Kum; Juhan Nam;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号