首页> 外文OA文献 >Lightweight Driver Monitoring System Based on Multi-Task Mobilenets
【2h】

Lightweight Driver Monitoring System Based on Multi-Task Mobilenets

机译:基于多任务MobileNets的轻量级驱动程序监控系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Research on driver status recognition has been actively conducted to reduce fatal crashes caused by the driver’s distraction and drowsiness. As in many other research areas, deep-learning-based algorithms are showing excellent performance for driver status recognition. However, despite decades of research in the driver status recognition area, the visual image-based driver monitoring system has not been widely used in the automobile industry. This is because the system requires high-performance processors, as well as has a hierarchical structure in which each procedure is affected by an inaccuracy from the previous procedure. To avoid using a hierarchical structure, we propose a method using Mobilenets without the functions of face detection and tracking and show this method is enabled to recognize facial behaviors that indicate the driver’s distraction. However, frames per second processed by Mobilenets with a Raspberry pi, one of the single-board computers, is not enough to recognize the driver status. To alleviate this problem, we propose a lightweight driver monitoring system using a resource sharing device in a vehicle (e.g., a driver’s mobile phone). The proposed system is based on Multi-Task Mobilenets (MT-Mobilenets), which consists of the Mobilenets’ base and multi-task classifier. The three Softmax regressions of the multi-task classifier help one Mobilenets base recognize facial behaviors related to the driver status, such as distraction, fatigue, and drowsiness. The proposed system based on MT-Mobilenets improved the accuracy of the driver status recognition with Raspberry Pi by using one additional device.
机译:驾驶员现状识别研究已经积极进行,以减少驾驶员分散和嗜睡引起的致命碰撞。与许多其他研究领域一样,基于深度学习的算法呈现出卓越的驾驶员状态识别性能。然而,尽管在驾驶员状态识别区域的几十年的研究中,基于视觉图像的驱动器监控系统尚未在汽车行业中广泛使用。这是因为系统需要高性能处理器,以及具有分层结构,其中每个过程受到先前过程的不准确性的影响。为避免使用分层结构,我们提出了一种使用MobileNets而不提供面部检测和跟踪功能的方法,并显示该方法以识别指示驾驶员分散注意的面部行为。但是,MobileNets使用覆盆子PI处理的每秒帧,单板计算机之一是不足以识别驱动器状态。为了缓解这个问题,我们提出了一种轻量级驱动程序监控系统,使用车辆中的资源共享设备(例如,驾驶员的移动电话)。所提出的系统基于多任务MobileNets(MT-MobiLenets),其包括MobiLenets基础和多任务分类器。多任务分类器的三个SoftMax回归有助于一个移动单元识别与驾驶员状态相关的面部行为,例如分散,疲劳和嗜睡。基于MT-MOBILENET的提出的系统通过使用一个附加设备提高了覆盆子PI的驱动器状态识别的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号